March 2, 2021

GOLDEN TARGET PROJECT PROVINCE OF ONTARIO, CANADA

(centered at 48°27'North & 80°30'West)

NATIONAL INSTRUMENT 43-101 & 43-101 F1 TECHNICAL REPORT

PREPARED FOR:

41B Minton's Lane, Port Severin, Ontario, CANADA, L0K 1S0

PREPARED BY:

Joel Scodnick, P.Geo. Sierra Geological Consultants Inc.

Effective Date: January 22, 2021 Revised: March 2, 2021

IMPORTANT NOTICE

The Report, "GOLDEN TARGET Project, Province of Ontario, Canada" was prepared as a National Instrument 43-101 Technical Report for GOOD Mining Exploration Inc. ("GMEI") by Sierra Geological Consultants Inc. ("SIERRA") under its <u>General Conditions of Service</u>. The quality of information, conclusions and estimates contained herein are consistent with the level of effort involved in SIERRA's services, based on (i) information available at the time of preparation and writing, (ii) data supplied by outside sources, and (iii) the assumptions, conditions, and qualifications set forth in this Report. This Report is intended for use by GMEI and can be filed as a Technical Report with the Canadian Securities Regulatory Authorities pursuant to National Instrument 43-101, Standards of Disclosure for Mineral Projects. Except for the purposes legislated under Canadian securities laws, any other uses of this Report by any third party are at that party's sole risk.

March 2, 2021

DATE AND SIGNATURE PAGE

The Report, "GOLDEN TARGET Project, Province of Ontario, Canada" with an Effective Date of January 22, 2021 and revised on March 2, 2021 was authored by the following:

"signed and sealed original on file"

Joel Scodnick, P.Geo Principal Consultant Sierra Geological Consultants Inc.

Issue & Effective Date: January 22, 2021 Revised Date: March 2, 2021

TABLE OF CONTENTS

1	SUN	1MAF	RΥ	.1
	1.1	Intro	duction	. 1
	1.2	Prop	erty Description and Location	. 1
	1.3	Expl	pration History	. 1
	1.4	Geol	ogy and Mineralization	. 1
	1.5	Expl	pration – Current	. 2
	1.6	Inter	pretation and Conclusions	. 2
	1.7	Reco	ommendations	. 2
2	INTF	RODL	ICTION	2
	2.1	Tern	ns of Reference and Purpose of the Report	. 3
	2.2	Decl	arations	. 4
	2.2	.1	Independence	. 4
	2.2	.2	Notice to Third Parties	. 4
	2.2	.3	Element of Risk	. 5
	2.3	Qua	ifications of Consultants	. 5
	2.4	Prop	erty Inspection – Site Visit	. 5
	2.4	.1	Current Property Inspection	. 5
	2.4	.2	Previous Property Inspection	. 5
	2.5	Sour	ces of Information	. 5
	2.6	Effe	tive Date	. 6
	2.7	Unit	s of Measure, Datum, and Abbreviation of Terms	. 6
3	RELI	ANCI	E ON OTHER EXPERTS	.6
4	PRO	PERT	Y DESCRIPTION AND LOCATION	.7
	4.1	Prop	erty Location	. 8
	4.2	Mine	eral Disposition	. 9
	4.2	.1	Mining Lands and Tenure System	10
	4.2	.2	Mining Lease	10
	4.2	.3	Freehold Mining Lands	10
	4.2	.4	Licence of Occupation	11
	4.2	.5	Land Use Permit	11
	4.3	Roya	Ities, Agreements and Encumbrances	11
	4.4	Expl	pration Plans	11
	4.5	Expl	pration Permits	11
	4.6	Curr	ent Permits and Project Status	11

	4.7 Env	ironmental Liabilities	11
	4.8 Otł	er Applicable Regulations	11
	4.9 Oth	er Significant Factors and Risks	
5	ACCESS	BILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	12
	5.1 Acc	ess to the Property	12
	5.3 Clir	nate	13
	5.4 Loc	al Resources and Infrastructure	13
	5.5 Phy	siography	13
	5.5.2	Topography	14
	5.5.3	Water Availability	14
	5.5.4	Flora and Fauna	14
	5.6 Tim	e zone	14
6	PROJEC	۲ AREA HISTORY	14
	6.1 His	oric Exploration	15
	6.1.1	Devil's Elbow & Sylvanite (48°28"28.6' Lat -80°29"27.14' Long)	15
	6.1.2	Taylor Au (48°26″11.9′ Lat -80°29″58.73′ Long)	16
	6.1.3	Reid Au (48°28″0.29' Lat -80°36″26.06' Long)	16
	6.1.4	Campbell-Moore Occurrence Au (48°27"58.57' Lat -80°26"17.31' Long)	16
	6.1.5	Turcott Au (48°28"2.44' Lat -80°28"29.98' Long)	16
	6.1.6	St Joe Au (48°26″40.35′ Lat -80°33″18.77′ Long)	
	6.1.7	Placer Au (48°28"2.88' Lat -80°30"7.23' Long)	
	6.1.8	Other Mineral Occurrences	17
	6.2 His	torical Drilling	17
	6.3 His	torical Mineral Processing and Metallurgical Testing	
	6.4 His	torical Sample Preparation, Analysis, Security	
	6.5 His	corical Production from the Property	
7	GEOLOG	SICAL SETTING AND MINERALIZATION	19
	7.1 Reg	ional Geology	19
	7.1.1	Economic Geology	20
	7.2 Loc	al Geology	21
	7.2.1	Mineralization	24
	7.2.2	Structure	25
	7.2.3	Alteration & Metamorphism	27
	7.3 Otł	er Commodity Potential	27
8	DEPOSI	TYPES	27
9	EXPLOR	ATION	28

	9.1 Compilation	
	9.2 Prospecting	
	9.3 Surface Geophysical Surveys	
	9.4 Airborne Magnetic and VLF Survey	
10	DRILLING	35
	10.1 Drill Hole Surveys	
11	SAMPLE PREPARATION, ANALYSES AND SECURITY	36
	11.1 Sample Collection and Transportation	
	11.2 Core Logging and Sample	
	11.3 Analytical	
	11.3.1 Control Samples	
	11.3.2 QA/QC Data Verification	
12	DATA VERIFICATION	37
13	MINERAL PROCESSING AND METALLURGICAL TESTING	37
14	MINERAL RESOURCE ESTIMATES	37
15	MINERAL RESERVE ESTIMATES	38
16	MINING METHODS	38
17	RECOVERY METHODS	
18	PROJECT INFRASTRUCTURE	
4.0		20
19	MARKET STUDIES AND CONTRACTS	
20	ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT	38
	20.1.1 Aboriginal Consultation	
21	CAPITAL AND OPERATING COSTS	38
22	ECONOMIC ANALYSIS	38
23	ADJACENT PROPERTIES	38
24	OTHER RELEVANT DATA AND INFORMATION	
25	INTERPRETATION AND CONCLUSIONS	39
26	RECOMMENDATIONS	40

27	REFERENCES	41
28	CERTIFICATE OF QUALIFIED PERSON	42
29	APPENDIX 1 – GMEI PROPERTY DETAILS	43
30	APPENDIX 2 – HISTORIC WORK OAFD FILES	59
31	APPENDIX 3 - SUMMARY OF HISTORIC DRILLING	63
32	APPENDIX 4 - SUMMARY OF GMEI DRILLING	66
33	APPENDIX 4 - AIRBORNE GEOPHYSICAL SURVEY	68
34	APPENDIX 5 - ASSAY CERTIFICATES	69

LIST OF TABLES

Table 4.1	Summary of GMEI property location information.	8
Table 4.2	Summary of GMEI claim cells and 2021 assessment requirements.	9
Table 6.1	Summary of historic diamond drill holes at Golden Target (28 DD for 4,188m)	
Table 6.2	Summary of historic RC drill holes at Golden Target (51 DD for 1,132m)	
Table 9.1	Summary of GMEI exploration work on the Golden Target property.	
Table 9.2	Summary of Samples collected in 2020 and presented in this report	
Table 10.1	Summary of GMEI diamond drill holes targeting gold mineralization (2014-2017)	
Table 11.1	Summary of Assay Certificate pertaining to samples in table 9.2 ¹	
Table 29.1	DEFIANCE block claim cells (11).	
Table 29.2	GOLDEN TARGET block claim cells (715)	
Table 30.1	Summary of historic work from OAFD.	59
Table 31.1	Summary of historic pre GMEI drilling on the Golden Target property.	63
Table 32.1	Summary of GMEI gold focussed drilling on the Golden Target property.	66
Table 32.2	Summary of GMEI drilling on the Golden Target CanREE project (2014-15)	67

LIST OF FIGURES

Figure 2.1	Location of the GMEI property in the Province of Ontario, Canada	3
Figure 4.1	Location of the GMEI property south of Matheson in relation to the DPFZ and area mines	8
Figure 4.2	Location of GMEI claim cell blocks, access roads, infrastructure, and main water bodies	9
Figure 4.3	Location of GMEI claim cell blocks in relation to surrounding 3 rd party properties	10
Figure 5.1	Physiography of the GMEI properties; Google Earth image.	12
Figure 5.2	Local geography surrounding the GMEI project area.	13
Figure 6.1	Distribution of historic exploration work on the GMEI properties based on the OAFD	15
Figure 7.1	Superior Province and its geological Subprovinces showing the location of the GMEI project	19
Figure 7.2	Geology of the southern Abitibi greenstone belt showing the distribution of lithologies and major	
	structures including the DPFZ and LLCFZ from OGS Open File 8317 pp19.	20
Figure 7.3	Location of Golden Target project in relation to major structures; DPFZ and LLCFZ.	21
Figure 7.4	Interpretive geological map based upon airborne geophysical data.	22
Figure 7.5	Geology of the project area showing main lithologies, mineralized occurrences, mines and MDI	
	occurrences	23
Figure 7.6	Silicified quartz vein breccia sample from the C1 gold occurrence.	25
Figure 7.7	Schematic diagram illustrating the structural position of the Golden Target property in relation to the	
	Arrow Fault and DPFZ (after Andrews Gold Fields report).	26
Figure 8.1	Schematic presentation for the genesis of orogenic gold deposits	28
Figure 9.1	2020 field program sample locations	32
Figure 9.2	2020 C1 gold occurrences sample distribution.	33
Figure 9.3	Airborne magnetic survey, total magnetic intensity using E-W line direction data.	34
Figure 9.4	Airborne VLF survey, in-line quadrature using E-W line direction data	35
Figure 10.1	Location of GMEI diamond drill holes targeting Au mineralization.	36
Figure 29.1	GOLDEN TARGET block claim cells (715).	58
Figure 30.1	Map locating historic work as provided in OAFD.	62

LIST OF APPENDICES

29	APPENDIX 1 – GMEI PROPERTY DETAILS	. 43
30	APPENDIX 2 – HISTORIC WORK OAFD FILES	. 59
31	APPENDIX 3 - SUMMARY OF HISTORIC DRILLING	. 63
33	APPENDIX 4 - AIRBORNE GEOPHYSICAL SURVEY	. 68
35	APPENDIX 5 - ASSAY CERTIFICATES	. 69

1 SUMMARY

The report titles, "Golden Target project, Province of Ontario, Canada" was prepared by SIERRA at the request of GMEI and focuses on GMEI's re-initiation of exploration activities over its Golden Target project area. GMEI is a mineral exploration company, a registered Canadian Corporation, and holds a 100% interest the mining claim cells of the project.

1.1 Introduction

GMEI's primary objective is to discover an economic gold deposit within its extensive Golden Target property whilst not ignoring the opportunity for the discovery of other deposits. The project has demonstrated both gold and base metals potential.

1.2 Property Description and Location

The Golden Target property is located south of the town of Matheson in the northern part of the Province of Ontario, Canada.

The Golden Target property which is the subject of this report and the focus of exploration for gold deposits by GMEI, comprises 715 contiguous claim cells for a total 13,600 ha. GMEI has strategically assembled the property in order to engage into investigations in this area adjacent to the Destor-Porcupine Fault Zone ("DPFZ") where the lack of historic work and the current interpretive geological model suggest an unrealized potential for the discovery of mineral deposits associated with the DPFZ.

1.3 Exploration History

The DPFZ has produced just over 200 million ounces of gold and is also host to a number of base metal deposits. The GMEI property has been the subject of only limited historic work which resulted in the identification of a number of mineral occurrences. GMEI work to-date includes prospecting, surface geophysical surveys and limited diamond drilling. The result from GMEI's work has also resulted in the discovery of new mineral occurrences on the property.

The Golden Target property is located approximately 20 km west-southwest of the Black Fox Mine which forms part of the Destor Porcupine Fault Zone metallotect. GMEI also sits adjacent to Victoria Gold Mines' Golden Arrow Mine property and just 3.2 km from the open pit, where approximately 24,000 ounces of gold have been mined from 1980-1983 and again in 2018 when a 100,000 bulk sample was extracted and processed (Ontario Geological Survey OFR 6131 p.44, & Mining Life, Feb.4, 2019). The Arrow fault appears to be a splay from the DPFZ which is interpreted to transect the Golden Target property in its entirety.

1.4 Geology and Mineralization

The Golden Target property is underlain by volcano-metasedimentary lithologies of the Archean age Blake River and Tisdale Assemblages and nontectonic plutons of the southern Abitibi Sub province. These lithologies and crosscut by late mafic dykes and by the renowned DPFZ.

Known mineralization on the Golden Target property includes "lode" gold associated with quartz veining and base metals associated with volcanic sequences. The gold mineralization is characterised as

"orogenic". Results from historic and current exploration activities have confirmed the nature of the gold mineralization is consistent with the orogenic type.

GMEI believes that there is significant unrealized discovery potential in this area immediately south of the DPFZ.

1.5 Exploration – Current

GMEI re-initiated its exploration activities in 2020 with the completion of prospecting and airborne geophysical surveys. This program represents a continuation of GMEI's methodical approach to the property. It resulted in the field location of additional historic mineral occurrences that will be the subject of planned 2021 activities. The airborne survey provided detailed data that will be integrated into the current geological database to interpret favorable structural trends for field follow up.

The 2020 exploration program represents GMEI's strategic approach to exploration at the Golden Target project; simultaneous regional investigations to generate targets for surface follow up and local exploration of specific targets in preparation for diamond drilling.

1.6 Interpretation and Conclusions

The Golden Target project area is situated in an area that is transected by structural splays off of the DPFZ. Geological interpretation of airborne geophysical data integrated with available geological information supports this model and provides a focus for the field activities.

Results from GMEI field activities to-date are consistent with historic results and have identified additional mineral occurrences on the property. The abundance, distribution, and tenor of the mineral occurrences on the property provides strong encouragement for continued efforts.

1.7 Recommendations

Based on the results to-date and the accumulation of historic results, SIERRA recommends continued exploration of the Golden Target property. It is recommended that GMEI continue its 2-component exploration strategy by engaging additional airborne geophysical surveys to eventually cover 100% of the project area and by simultaneously implementing further directed surface activities. SIERRA recommends additional prospecting and mapping for targets generated based on compilations and regional surveys. Based on the results thereafter the use of I.P. and EM surface geophysical survey methods is recommended to prioritize targets in preparation for diamond drilling.

2 INTRODUCTION

This report presents a technical review of the available geological information for the Golden Target project. The project is located in the northern part of the Province of Ontario Canada.

Geologic, geophysical, and geochemical information was accessed from Government sources including historic assessment work and public domain sources and from work carried out by GMEI. The GMEI work includes compilation, prospecting, sampling, and geophysical surveys. Prior work conducted by GMEI on the CanREE area is not included herein.

Figure 2.1 Location of the GMEI property in the Province of Ontario, Canada.

Activities conducted by GMEI have identified a new gold occurrence at "C1" and located and verified a number of historic gold occurrences on the Golden target property to secure the mineral potential hypothesis. The C1 gold occurrence outcrops as a quartz breccia vein containing up to 10% pyrite and returned up to 13.1gpt Au in a grab sample. Its exposed strike length is limited. Follow up work is planned to establish the limits of this vein.

Surface VLF geophysical surveys conducted by GMEI have identified a large number of anomalous areas for further investigation. Subsequent completion of an airborne VLF survey confirmed the ground results and substantially extended the coverage of this method.

In 2020 GMEI has re-initiated its exploration activities for gold in the Golden Target project area. It intends to continue these efforts in 2021, building on the results to-date.

2.1 Terms of Reference and Purpose of the Report

SIERRA was commissioned by GMEI to prepare a technical report on its 100% owned Golden Target projects located south of the town of Matheson in the Province of Ontario. The Report conforms to the standards set out by National Instrument ("NI") 43-101, companion policy NI 43-101CP, and Form 43-101F1 Standards of Disclosure for Mineral Projects.

The Report is intended as a summary of scientific and technical information, historical exploration results, and the current geological knowledge of the GMEI project and provides recommendations for continued exploration of the Property. The project area is located immediately south of the town of Matheson (centered at 48°27'North & 80°30'West). It was prepared by SIERRA on behalf of GMEI for the purpose of updating the technical aspects of the Golden Target Project ("Golden Target") and is intended as support for an exploration transaction or Qualified Transaction.

The Golden Target property comprises mining claim cells covering Archean terrains spatially associated, and with the northern boundary of the claim block being just a few km's south of the renowned Destor-Porcupine Fault Zone ("DPFZ"); a World Class gold producing metallotect. GMEI is focussed on the exploration for economic gold deposits associated with the DPFZ, within their Golden Target property.

GMEI reviewed draft copies of this Report for factual errors. Any changes made as a result of these reviews did not include alterations to the interpretive conclusions made herein. The statements and opinions

expressed in the Report are made in good faith and in the belief that they are not false or misleading at the date of this Report.

2.2 Declarations

This technical report represents the professional opinions of the author, Joel Scodnick, P.Geo.. It is the result of the inspection of information made available to arrive at conclusions based on reasonable assumptions made by the author using his professional judgement. The Report has been prepared based upon the scope of work agreed with GMEI and is subject to inherent limitations as a result of the scope of work, the methodology applied, procedures and sampling techniques utilized.

SIERRA has assumed that all of the information and technical documents reviewed are accurate and complete in all material aspects. SIERRA has not performed sufficient independent sampling to ascertain the accuracy of the historic exploration results on the Golden Target property.

SIERRA has reviewed the land tenure of the Property on the Ontario Ministry of Energy, Northern Development and Mines ("MNDM") mining lands administration system ("MLAS") web site. It has not independently verified the legal status of ownership of the Property or the legal status of the underlying agreements.

This Report is prepared in accordance with the requirements of NI 43-101 and in compliance with Form NI 43-101F1 of the Ontario Securities Commission and the Canadian Securities Administrators. The Report does not contain any mineral resource or mineral reserve estimates.

The Report is meant to be read as a whole and any portions thereof should be relied upon in the context of the whole Report. The statements and opinions expressed in the Report are given in good faith and in the belief that such statements and opinions are not false or misleading at the date of this report.

2.2.1 Independence

Neither SIERRA or the author of this Report have any material, present or contingent, interest in the outcome of this report. They do not have any pecuniary or other interest that could be reasonably regarded as affecting their independence in its preparation. The report has been prepared in return for professional fees based upon agreed commercial rates. These fees are in no way contingent on the results of the Report. No member or employee of SIERRA is, or is intended to be a director, officer, or other direct employee of GMEI or has, or has had, and shareholding in GMEI.

There is no formal agreement between SIERRA and GMEI as to GMEI providing further work for SIERRA.

2.2.2 Notice to Third Parties

This report was prepared by SIERRA for GMEI in consideration of the particular needs and interests of GMEI, and in accordance with GMEI's instructions while in compliance with NI 43-101 Technical Reporting guidelines. It is not written for any others person's or party's particular interests. Third party needs and interest may be distinctly different from those of GMEI making this report potentially insufficient, unfit, or inappropriate for a third party.

2.2.3 Element of Risk

All interpretations and conclusions reached in this report are derived from current geological theory and the best evidence available to the author at the time of writing. The nature of scientific conclusions is that they are founded on an assessment of probabilities and thus do not permit any claim for absolute certainty. Therefore, any economic decisions which might be taken based on interpretations and conclusions contained herein will carry an element of risk.

2.3 Qualifications of Consultants

Joel Scodnick, P.Geo. is the Qualified Person for this report under the regulations of National Instrument 43-101.

2.4 Property Inspection – Site Visit

The Golden Target project was visited by Mr Joel Scodnick, P.Geo., principal consultant of SIERRA and an independent Qualified Person in terms of NI 43-101, on a number of occasions from 2015 to 2020.

2.4.1 Current Property Inspection

The Golden Target project was visited by Mr Joel Scodnick, P.Geo. between September 18, 2020 and October 22, 2020 for a total 9 days on-site. Independent verification of sampling and field activities were conducted by Mr Scodnick during the visits including inspection of outcrops and old workings at several areas of the project.

SIERRA and GMEI consider that Mr Scodnick's property inspections are current under section 6.2 of the NI 43-101.

2.4.2 Previous Property Inspection

Mr. Scodnick, P.Geo. also visited the Property on a number of previous occasions beginning in July 2015. The initial visit was made to supervise gold exploration activities as acting Exploration Manager. Subsequent visits were completed up to 2017. During these visits Mr Scodnick, P.Geo. participated in the field activities and supervised the gold focussed drill program. Mr Scodnick, P.Geo. co-authored the 2017 Technical Report for GMEI (Paiement JP and Scodnick J, 2017, Golden Target Project Matheson – Ramore Region, Ontario).

2.5 Sources of Information

The information, conclusions and recommendations contained in this Report are based on:

- i. Review of digital and hard copy data made available by GMEI including geological reports, maps, drill logs, miscellaneous technical reports, memoranda, and other information obtained collected by GMEI.
- ii. Discussions with GMEI representatives and consultants who are familiar with the Project area and its history.
- iii. Review of digital and hard copy public domain data from Government sources including assessment reports from previous exploration and development activities in the Project area and region as listed in Appendix 2, technical papers, and published geological reports.

iv. Examination of outcrops, samples, and drill core.

SIERRA has relied heavily on historic reports that describe the surface extent and known mineralized occurrences on the Property and on information derived from a previous NI 43-101 technical report completed by GMEI in 2017 (Paiement JP and Scodnick J, 2017, Golden Target Project Matheson – Ramore Region, Ontario). SIERRA has assumed that all of the information and technical documents reviewed are accurate and complete in all material aspects.

SIERRA has reviewed the land tenure on the MNDM's MLAS website but has not independently verified the legal status or ownership of the Property or any underlying agreements.

2.6 Effective Date

The Effective date of the Report is January 22, 2021.

2.7 Units of Measure, Datum, and Abbreviation of Terms

All measurements in this Report are presented in the metric system. Monetary units are provided in Canadian dollars unless specifically stated otherwise. The coordinate system used is Universal Transverse Mercator NAD83 Zone 17 of the northern hemisphere. The abbreviations used in the Report are as follows:

Abbreviation	Meaning
Ag	Silver
Au	Gold
C\$	Canadian dollars
DPFZ	Destor Porcupine Fault Zone
EST	Eastern Standard Time
GMEI	GOOD Mining Exploration Inc.
Golden Target	Golden Target Project
gpt	Grams per metric tonne
LLCFZ	Larder Lake Fault Zone
MDI	Mineral Deposits Inventory
MLAS	Mining Lands Administration System
MNDM	Ministry of Northern Development & Mines
NI 43-101	National Instrument 43-101
OAFD	Ontario Assessment File Database
ppm	Parts per million
MNR	Ministry of Natural Resources
SIERRA	Sierra Geological Consultants Inc.

3 RELIANCE ON OTHER EXPERTS

SIERRA has relied on historic data and information made available from GMEI, from the public domain, and personal communications with other professionals. The author has reviewed this data and believes that the exploration conducted by the previous explorers was completed in a manner consistent with normal practices of their time. However, the author cannot guarantee its accuracy and completeness but

has no reason not to rely on this historic information for the interpretational purposes in the Report. The historic drill hole data and information could not be verified.

SIERRA has also relied upon information provided by GMEI regarding the property tenure of mining claim cells and right of ways and all other components of the Property. Information relating to tenure for claim cells was reviewed through the Ontario Ministry of Energy, Northern Development and Mines ("MNDM") Mining Lands Administration System ("MLAS") on-line application. The MNDM disclaims any guarantee or warranty that their information is accurate, complete, or reliable. SIERRA has relied on this information and has not undertaken an independent detailed legal verification of title and ownership of the GMEI claim cells. SIERRA has not reviewed the details of any underlying agreements between third parties pertaining to the GMEI property. The property description presented in this report is not intended to represent a legal title, or any other opinion as to title.

The professional geologists involved in the 2020 exploration program included Joel Scodnick and Paul Nagerl. Mr Scodnick is the author of this report and Qualified Person for GMEI. He participated in the planning, execution, and supervision of the field programs. Mr Nagerl conducted most of the 2020 field work and provided supervision of the airborne geophysical survey.

This report references and relies upon previous qualified reports for historic work completed by GMEI on the property. SIERRA reserves the right, but will not be obliged to revise the report and conclusions if additional information becomes known subsequent to the effective date of this report. A draft copy of the Report has been reviewed for factual errors by GMEI.

4 PROPERTY DESCRIPTION AND LOCATION

The GMEI properties comprise a 100% interest in 726 cell claims totalling 13,768ha in area in two noncontiguous blocks situated in northern Province of Ontario; the Golden Target and Defiance blocks. These GMEI properties are located within the Larder Lake Mining Division and Kirkland Lake Ministry of Natural Resources (MNR) Districts of the Province of Ontario. A number of 3rd party patented claims intersect and perforate the GMEI claim cell blocks.

The Golden Target block <u>only</u> is the subject of this report.

Figure 4.1 Location of the GMEI property south of Matheson in relation to the DPFZ and area mines.

4.1 Property Location

The GMEI properties are located south of the town of Matheson in the Province of Ontario, Canada.

Table 4.1Summary of GMEI property location information.

GOLDEN TARGET BLOCK	DEFIANCE BLOCK
centered on 48°27'N / 80°30'W	centered on 48°21'N / 80°18'W
NTS 42A07H 42A07I 42A08E 42A08L	NTS 42A08F
Centered 60km south of the town of Matheson	Centered 70km south of the town of Matheson
Townships of Bowen, McCann, Currie, & Egan	Black Township
LARDER LAKE N	1INING DIVISION
Kirkland Lake	MNR Districts

4.2 Mineral Disposition

The GMEI properties comprise two non-contiguous blocks totalling 726 cell claims and 13,786ha in area. *Table 4.2 Summary of GMEI claim cells and 2021 assessment requirements.*

PROPERTY NAME	NUMBER OF CELLS	AREA HA	WORK APPLIED	WORK REQUIRED	TOTAL RESERVE
GOLDEN TARGET	715	13,600	678,579	245,000	877,050
DEFIANCE	11	168	0	4,400	0
Totals	726	13,768	678,579	249,400	877,050

Note: Total reserve as provided in table 4.2 does not include credits for work presented in this report. Accumulated work credits and reserve amounts are not available for transfer to other claim cells if acquired after the work was completed or whose continuity with claim cells upon which the work credits rests was made after the work was completed. The accumulated reserve of \$877,050 is contained in 15 claim cells.

Two claim cells are in the "active pending" status. The property includes thirteen boundary cells. The earliest claim cell anniversary is April 8, 2021. Fifteen claim cells have 2021 anniversary dates.

Total 2021 assessment work requirements are \$249,400 with a total \$877,050 available in reserve excluding amounts presented for credit from the 2020 exploration activities. The Defiance block has no work credit available to meet its 2021 work requirement.

A detailed listing and map of the GMEI claim cells is provided in appendix 1.

4.2.1 Mining Lands and Tenure System

The Ontario Mining Act and its underlying Regulations is the provincial legislation that governs and regulates prospecting, mineral exploration, mine development and rehabilitation in the Province of Ontario.

4.2.2 Mining Lease

There are no mining leases on the GMEI properties.

4.2.3 Freehold Mining Lands

There are no freehold mining lands on the GMEI properties.

4.2.4 Licence of Occupation

There are no licenses of occupation on the GMEI properties.

4.2.5 Land Use Permit

There are no land use permits currently in place.

4.3 Royalties, Agreements and Encumbrances

There are no royalties, no known underlying agreements or known encumbrances on the GMEI properties.

4.4 Exploration Plans

Excerpt from MNDM web site (http://www.mndm.gov.on.ca/en/mines-and-minerals/mining-act) Modernizing the Mining Act (MAM) Phase II.

"Before undertaking certain early exploration activities, an exploration plan must be submitted, and notification provided to any surface rights owner(s). Aboriginal communities potentially affected by activities proposed in an exploration plan are notified by the Ministry of Energy, Northern Development and Mines (ENDM) and have an opportunity to provide feedback before the proposed activities can be carried out. Effective April 1, 2013 exploration plans became mandatory for prescribed activities."

4.5 Exploration Permits

Excerpt from MNDM web site (http://www.mndm.gov.on.ca/en/mines-and-minerals/mining-act) Modernizing the Mining Act (MAM) Phase II.

"Some early exploration activities require an exploration permit. Those activities are only allowed to take place once the permit has been approved by ENDM. Surface rights owners must be notified when applying for a permit. Aboriginal communities potentially affected by the exploration permit activities are to be consulted and given the opportunity to provide comments and feedback before a decision is made on the permit. Effective April 1, 2013 exploration permits became mandatory for prescribed activities."

4.6 Current Permits and Project Status

Exploration of the Golden Target block is ongoing with recent airborne magnetic and VLF surveys and prospecting activities completed in 2020. Continuation of the field activities include surface geophysical surveys and additional prospecting leading to the selection of drill targets. Further airborne geophysical surveys are being contemplated to assist in the refinement of a geological model.

Permit PL-20-000130 to complete an I.P. surface geophysical survey was approved for contiguous claim cells 109861, 293488 and 306156 and is valid from January 7, 2021 to January 6, 2023.

4.7 Environmental Liabilities

The author is not aware of any environmental liabilities pertaining to the GMEI properties.

4.8 Other Applicable Regulations

The author is not aware of any other applicable regulations currently pertaining to the GMEI properties.

4.9 Other Significant Factors and Risks

The author is not aware of any other significant factors and risks currently pertaining to the GMEI properties.

5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The GMEI property encompasses a large area over four townships. Access to the property is reasonable due to ongoing logging operations and resulting abundance of logging roads. Infrastructure and support are provided by nearby towns and city accessed along the Provincial and Tans-Canada highways which skirt the property.

Mining, forestry, and farming are the principal industries in the area, supplemented by tourism including hunting and fishing. Active logging operations on the property necessitate extra care for the preservation of grids and drill collars.

Figure 5.1 Physiography of the GMEI properties; Google Earth image.

5.1 Access to the Property

The Golden Target property can be accessed by a number of routes leading out of Highway 11 near the town of Ramore or off of Trans-Canada Highway 101 near the town of Matheson.

The most prominent access route to the Golden Target property used to date is obtained off of the Trans-Canada Highway at the town of Matheson onto the Watabeag Lake all weather gravel road from which a variety of logging roads and trails transect the property. Access to the western most reaches of the property from the Watabeag River road is interrupted by the Watabeag River which transects the western portion of the property in a N-S direction.

Hilly topography due to outcropping ridges or sand and gravel glacial features and poorly maintained logging roads necessitates a four-wheel drive vehicle and all-terrain vehicles to efficiently access certain areas. Winter access necessitates the use of a snowmobile in these areas and further on the roads that are not maintained during the winter months.

The nearest commercial airport is located 100km west along Highway 101 in the City of Timmins.

5.3 Climate

The climate is described as continental, characterized by cold dry winters and relatively warm dry summers typical for the central Canadian Shield. The temperature range is very broad and seasonal from minus 24°C to 24°C on average with extremes to a high of 35°C and to a low of minus 35°C. Annual precipitation averages 558mm rain and 314cm snow with daily extremes to 88mm rain and 48cm snow. The bulk of the precipitation takes place in the months from June to August.

The project area is situated well inland of any major water bodies thereby excluding any related effect on the moderation of temperature. In winter, the area is affected by continental air masses bringing extremely cold temperatures from the Arctic. During the summer maritime air masses reaching the project area do influence the climate somewhat.

5.4 Local Resources and Infrastructure

Although there is a small airport in town of Kirkland Lake, there are no available commercial scheduled flights from there. The nearest airport with scheduled commercial flights is located in the city of Timmins. Both airports are located about equidistant from the project area; Kirkland Lake to the south and Timmins to the west. The city of Timmins to the west is an established mining hub and provides an excellent source of skilled and trained labour for advanced exploration and mining activities and specialized machinery and mining equipment.

The town of Matheson has approximately 2,400 inhabitants and offers support in the form of stores, restaurants gas station, and accommodation. Matheson has been a focus for exploration and mining in the region since the 1800s when gold production in the region was initiated.

The nearby town of Ramore offers limited accommodation and support for exploration activities.

Figure 5.2 Local geography surrounding the GMEI project area.

5.5 Physiography

The physiography of the Golden Target project area is typical of the region with local obstacles from the Watabeag River and beaver dams. It is varied over the property due to the effects of recent glaciation and local topographic changes.

5.5.2 Topography

The project area is substantially covered by glacial tills with extensive sandy plains. Moderate relief is the result of minor bedrock outcropping and from accumulations of glacial deposit, sand, and gravels.

5.5.3 Water Availability

Swamps, creeks, lakes, and the Watabeag River provide abundant sources of water within the project.

5.5.4 Flora and Fauna

The project area is primarily covered by jack pine and poplar forest, and alder bushes. Wildlife includes moose, bear, wolf, cayote, a variety of rodents, and pheasants.

5.6 Time zone

The project area lies within the Eastern Standard Time Zone ("EST"); UTC-GMT offset -5h during standard timer and -4hr during daylight saving time.

6 PROJECT AREA HISTORY

Initial prospecting activities in the region date back to the 1800s and led to the discovery of significant Au deposits along a prominent structure which later became known as the DPFZ and the Larder Lake-Cadillac fault zone ("LLCFZ").

Only limited historic exploration work is documented in the Golden Target area prior to GMEI establishing its presence and conducting its own exploration activities. Prospecting in the project area is hampered by a lack of outcropping which likely also deterred earlier activities. As a result, the previous exploration activities were sporadic and concentrated along the northern and eastern margins of the property where outcrop is most prevalent. Ontario Assessment File Database ("OAFD") files totaling 98 have been registered to the project area describing some of the historic work, the predominance of which comprises surface geophysical surveys and prospecting. Only very limited drilling, limited mapping and substantially no detailed airborne geophysical surveys over the project area contribute to a current poorer understanding of the project geology.

6.1 Historic Exploration

However, the historic prospecting and exploration activities in the area of the Golden Target project did result in the discovery of a number of mineralized occurrences including some with reported economic precious metals and economic base metals concentrations from grab samples and in drill core. As part of its methodical approach to the evaluation of the Golden Target project area, field identification and confirmation of these historic occurrence is an ongoing activity by GMEI. Mineralized occurrences documented on the Golden Target project area include the following.

6.1.1 Devil's Elbow & Sylvanite (48°28″28.6' Lat -80°29″27.14' Long)

Free gold and 15% nodular pyrite is reported in this series of occurrences first investigated in 1915 (MDI files 42A08NW00110, 42A08NW00150, and 41A08NW00151) and currently within GMEI claim cells 161050 and 215847. Host lithologies are described as mafic volcanics including tuff and amygdaloidal, siltstone, chert, and porphyry. At least 10 shallow drill holes are reported by Devil's Elbow Mines (1947 & 1966) and Sylvanite Mines (1956). Historic sample results returned up to 1.17opt Au over 2 feet in drill hole, 1.8% Cu over 6.9 feet from a trench and grabs samples returning 11.42% Cu 6.21% Pb 4.31% Zn and 0.6opt Ag.

Prospecting by GMEI in 2020 located 2 pits and one drill hole collar. A detailed investigation of this site is planned for 2021.

6.1.2 Taylor Au (48°26″11.9′ Lat -80°29″58.73′ Long)

Up to ~1.36opt Au and 0.14opt Au reported in syenite contact metamorphic aureole referred to in MDI file 42A07NE00053.

The location of a single prospecting pit was located in 2020.

6.1.3 Reid Au (48°28″0.29' Lat -80°36″26.06' Long)

This occurrence was discovered Pre-1931 and is referenced to a series of elevated outcrops that straddle the western margin of the property. Up to 0.2opt Au in quartz lenses and stringers hosted by basalt is reported in MDI file 42A07NE00046.

An initial attempt to locate this prospect in 2020 was unsuccessful.

6.1.4 Campbell-Moore Occurrence Au (48°27"58.57' Lat -80°26"17.31' Long)

This occurrence was first investigated in 1919 by at least 5 prospect pits and numerous trenches (MDI file 42A08NW00045) and currently lies within GMEI claim cell 288296 and 241180. It is described as narrow and sporadically distributed quartz-calcite-epidote veins with and without pyrite and a gossanous pyrite zone. Rare chalcopyrite was noted. The quartz veins are hosted in sub greenschist facies tholeiitic basalt and narrow interflow sediments.

Prospecting by GMEI in 2015 and 2017 returned anomalous precious and base metals concentrations within a 230m radius of the Campbell-Moore historic pits and trenches, including 3.909gpt Au 19gpt Au 7,136ppm Cu 2.241ppm Pb in sample B00128041, 1.166gptAu in samples B00128047.

6.1.5 Turcott Au (48°28″2.44' Lat -80°28″29.98' Long)

Described as quartz and quartz-carbonate stringers with "Low" gold values hosted in tholeiitic volcanics in MDI file 42A08NW00046. Overburden and diamond drilling reported does not appear in the Ontario Drillhole Database.

An initial site visit to the occurrence by GMEI identified a number of pits and trenches and abundance of quartz veining over 100s metres. The presence of sulphide was noted including massive pyrite.

6.1.6 St Joe Au (48°26″40.35′ Lat -80°33″18.77′ Long)

Four diamond drill holes and 19 overburden holes completed in 1980s returned up to 0.032opt Au as referred to in MDI file 42A08NE00010. The Lat/Long and township location information provided for this occurrence are contradictory. The drill holes referenced do not appear in the Ontario Drillhole Database at the given Lat/Long location.

6.1.7 Placer Au (48°28″2.88' Lat -80°30″7.23' Long)

Reported in 1986 assessment file 42A08NW0102, a grab sample returned 2.47gpt Au in quartz vein with 2% pyrite. Pits were noted but there is no record of older work in the Ontario database.

6.1.8 Other Mineral Occurrences

Other mineral occurrences of note due to their location in close proximity to the Golden Target property or their definitive trend approaching the property are noted and utilized as anchors along with those within the property to refine the geological interpretation for targeting purposes. These "outside" mineral occurrences include the following.

6.1.8.1 Arrow Au Mine (48°27"24.88' Lat -80°24"31.29' Long)

This is a past producer immediately east of the property and interpreted to be associated with the Arrow fault structure that continues into the property. The Arrow Gold mine occurs in quartz stringers associated with a felsic stock in mafic volcanics.

6.1.8.2 Caramora Porcupine Au (48°26″47.31′ Lat -80°25″23.53′ Long)

Reported 0.13opt Au over 1 foot in drill hole hosted in diorite intruded by quartz-carbonate and syenite veins (MDI file 42A08NW00112).

6.1.8.3 Hyde Au (48°23"2.31' Lat -80°25"55.53' Long)

Trench and grab samples reported yielding up to 0.64opt Au and 0.24opt Au respectively (MDI file 42A08NW00155). Erratically distributed gold associated with NE trending quartz veins hosted by diorite/gabbro which has been intruded by dykes and stringers/ stockworks of syenite. The veins vary from 2 to 6 feet in width and can be traced for several hundred feet.

6.1.8.4 Noranda Au (48°24"38.32' Lat -80°24"34.53' Long)

Trench samples returned up to 0.22opt Au over 21 feet and 0.36opt over 5 feet plus up to 11.56gpt Au from a grab sample (MDI file 42A08NW00015). Gold is found associated with pyrite (up to 17% locally) in silicified quartz-feldspar lenses, locally with hematite alteration, hosted in basalt.

6.1.8.5 Tillex Base Metals (48°29″42.42′ Lat -80°33″14.01′ Long)

Located immediately adjacent to the northern margin of the property, the Tillex occurrence is a blind glacial till covered Cu Pb An Au Ag deposit hosted in a hydrothermally altered felsic intrusive. Extensive diamond drilling returned up to 2.2% Cu over 22 feet, 0.6opt Au over 3.5 feet and 8.46opt Au (MDI file 42A10SE00055).

The area of this occurrence was visited in 2020 and a cache of drill core pertaining to it located on site.

A systematic and methodical field examination and sampling program of these mineralized occurrences is planned.

6.2 Historical Drilling

Available documented historic pre-GMEI drilling on the Golden Target property is limited and locally concentrated. Only 79 holes totaling 5,320m were completed between 1947 and 1999.

Year	#Holes	Total (m)	Company
1947	3	228.67	Devil's Elbow
1956	3	214.94	Sylvanite
1966	4	458.53	Devil's Elbow
1970	1	39.02	Turney
1971	2	253.36	Amax Potash
1972	1	96.34	Amax Potash
1981	2	182.32	Asarco
1984	1	213.41	Asarco
1989	1	401.12	Westmin Resources
1990	1	226.22	Queenstone
1991	1	31.25	MNDM
1996	3	938	Falconbridge
1996	2	240.48	Larry Salo
1999	2	501	Starfire Minerals
unknown	1	163.41	D Crites

Table 6.1Summary of historic diamond drill holes at Golden Target (28 DD for 4,188m)

|--|

Year	#Holes	Total (m)	Company
1975	9	306.83	Derry, Michener, Booth
1980	5	146.34	Asarco
1981	2	14.94	Asarco
1982	2	38.72	Asarco
1984	3	94.44	Asarco
1985	13	292.69	Asarco
1985	17	238.3	Kidd Creek Mines

No historic drill core from the Golden Target property has been located or examined and is presumed lost.

6.3 Historical Mineral Processing and Metallurgical Testing

No applicable.

6.4 Historical Sample Preparation, Analysis, Security

GMEI is not able to verify the historic methods.

6.5 Historical Production from the Property

There has been no historical commercial production from the Golden Target property however a number of past producers are located in the immediate vicinity and include:

- The Arrow mine situated immediately east of the property and on an interpreted trend intersecting the property.
- The Black Fox, Gold Post, and Taylor mines located north of the property along the prominent and productive DPFZ.

These deposits and the known mineralized occurrences located on and proximal to the Golden Target property provide geologic anchors for the development of new Au targets, however, proximal locations

March 2, 2021

of these occurrences provides no assurance that GMEI will discover mineralization that has any economic significance.

The DPFZ continues for 150 kilometres from Duparquet Quebec to Timmins Ontario and is populated with numerous gold deposit with cumulative production estimated in excess of 89 million ounces. The Golden Target property is strategically located immediately south of the DPFZ midway between Timmins and Duparquet, and as mentioned before the proximal location of the Golden Target property to the DPFZ does not mean than an economic gold deposit will be found.

7 GEOLOGICAL SETTING AND MINERALIZATION

The project area lies in a large geologic Archean craton, the Superior Province of Canada. Within this craton, the project is located in its Abitibi Sub province which is host to a remarkable concentration of metals in its southern corridor.

7.1 Regional Geology

The project is hosted by volcanometasedimentary sequences of the Tisdale River assemblages and Blake and constrained in the north and south by the DPFZ and LLCFZ respectively. These structures extend for 100s kilometres in and E-W direction and are marked by significant gold production. The DPFZ is the most important metallotect in the Abitibi Sub province due to its predominance of mineral deposits. Four past producing mines are located within 10 kilometres of the project area.

Figure 7.1 Superior Province and its geological Subprovinces showing the location of the GMEI project.

The Tisdale assemblage comprises felsic to intermediate to mafic volcanic tuff and tuff

breccia intercalated in argillite and greywacke. It is conformably overlain by the Blake River assemblage or stratigraphically parallel fault bound at or near the Tisdale contact. The Blake River assemblage comprises predominantly mafic volcanic massive and pillowed flows. Felsic plutons truncate the general E-W stratigraphy; predominantly the Watabeag pluton in the project area. This pluton is post volcanic and nontectonic, multi lobate and predominantly granodioritic in composition. The project area also hosts minor Huronian sediments and is crosscut by north trending Nipissing diabase dykes and northeast trending Matachewan dykes.

The Golden Target property is located immediately south of the DPFZ and surrounds the Watabeag pluton.

7.1.1 Economic Geology

Precious metals and base metals deposits in the region are prolific along the E-W trending DPFZ and LLCFZ with combined historic production at about 200 million ounces of gold and includes the World Class Kidd Creek VMS deposit. These structural features extend for approximately 317 kilometres from Val d'Or Quebec to Timmins Ontario.

Figure 7.3 Location of Golden Target project in relation to major structures; DPFZ and LLCFZ.

The project area is strategically situated immediately south of the DPFZ, targeting mineralized splays off of the DPFZ.

7.2 Local Geology

The property is largely unmapped and with poor outcropping due to extensive sand plains and other glacial deposits that limit exposure. As a consequence, GMEI is relying on maps provided through Government publications which are largely based upon airborne magnetic data, augmented by outcrop information where available.

Figure 7.4 Interpretive geological map based upon airborne geophysical data.

The Hayden R. Butler interpretive map emphasizes the prominent E-W volcano-sedimentary stratigraphy interrupted by large plutons and crosscutting north trending structures and the high strain zones including the E-W striking DPFZ.

Government mapping (Leahy, 1964) indicates the property is underlain by a south-facing sequence of massive and pillowed mafic flows and granitic to syenitic intrusions cut by late north-trending feldsparporphyritic Matachewan diabase dykes and by later northeast-trending Nipissing diabase dykes.

The general orientation of the stratigraphy is E-W with local deviations due to folding or structural disruptions. Structural interpretations of the regional magnetic and gravity data indicate that the Golden Target area is truncated by major EW faults and shears that may be associated with the DPFZ and by related NE trending tensional faults.

GMEI field observations are consistent with these interpretations.

Lithologies underlying the project area identified in the field include;

- Mafic to intermediate volcanic rocks, locally massive and pillowed, occasionally porphyritic and amygdaloidal.
- Felsic intrusive of the Watabeag pluton, locally syenite in composition.
- Gabbro/diorite generally massive, locally with sulphide weak concentration.
- Bull white quartz veins are common on the property, locally with associated sulphide, predominantly pyrite. Gold mineralization is found in quartz breccia veins.

Historic gold and base metal exploration activities have resulted in the discovery of a number of gold deposits and showings within the project region. These results and the strategic location of the Golden Target Project between the Porcupine and Kirkland Lake mining districts coupled with the interpreted structural trends transecting the Property anchored by the known mineralized occurrences provide the substantial support for continued investigations.

Prospecting activities thus far completed by GMEI have confirmed the location of historic mineralized occurrences returning up to 3.9gpt Au and led to the discovery of the new C1 Au occurrence returning up

March 2, 2021

to 13.1gpt Au. Detailed airborne magnetic survey results and prospecting by GMEI will continue to enhance the understanding of the geology for the project.

7.2.1 Mineralization

The southern Abitibi province is amongst the best endowed precious and base metals regions of the world. It has been a cornerstone of the Canadian mining industry and remains as such today as a concentration of mining and exploration activity. Gold represents the main commodity in this region where greenstone hosted quart carbonate vein-type systems dominate orogenic gold systems.

Mineralization identified on the Golden Target property historically and by GMEI is varied in style and distribution and noted in their relative position to the prolific DPFZ metallotect.

Known mineralized occurrences can be categorized as predominantly gold bearing and as base metal rich. Gold bearing occurrences occur in a variety of host lithologies including mafic volcanic, porphyry, syenite and gabbro/diorite. The gold appears within quartz veins and stringers, commonly associated with sulphide, usually pyrite. Pyrite is often also found in the immediate host lithology of the quartz veins and may also contain gold. Alteration identified thus far includes silicification, carbonate, epidote, and hematite. Silicified breccia has been identified at a number of sites.

Base metal occurrences appear associated with mafic volcanics and porphyry. Economic grades of Cu, Pb and Zn have been described in the historic data. These also contain elevated Au and Ag concentrations.

Only a portion of the property has thus far been prospected by GMEI which led to the discovery of an entirely new gold occurrence, the "C1" which returned assays from grab samples as high as 13gpt Au, and anomalous Au at the GT2 occurrence and extension of the Turcott historic occurrence.

Figure 7.6 Silicified quartz vein breccia sample from the C1 gold occurrence.

At C1, weakly to strongly disseminated and semi-massive pyrite locally, euhedral to subhedral crystal structures are locally concentrated within the silicified quartz matrix and also in the silicified mafic volcanic breccia fragments.

7.2.2 Structure

The genesis of vein-type to disseminated gold deposits are broadly classified as orogenic gold deposits. These occur in accretionary terranes and collision zones of all geological periods, commonly located in the deformed volcano-sedimentary sequences. Active crustal deformation is a requirement for providing the structures to generate and maintain permeability and to sustain large-scale fluid flow to develop the gold deposits in this terrain. Structures hosted by Late Archean rocks worldwide contain a high percentage of the world gold resource. The Golden Target project is situated in the Archean Abitibi greenstone belt volcano-metasedimentary sequence, where the orogenic gold deposit type is the targeted gold mineralization style.

Orogenic gold deposits are commonly late in the kinematic history of their hosting orogens such that their geometry is commonly preserved to the present time. Thus, interpretive geological mapping to define structures potential controlling these deposits is an essential exploration tool. Within the host volcano-sedimentary sequences at the province scale, World-class orogenic gold deposits are most commonly located in second-order structures adjacent to crustal scale faults and shear zones such as the DPFZ. Regional magnetic data augmented with mapping of exposed bedrock has been used to create interpretive maps illustrating the complex structural nature of the project area. Structural splays and cross structures associated with the DPFZ and anchored in known mineralization have been identified from these compilations and shown to be transecting the Golden Target property.

The Arrow Au deposit located immediately east of the Golden Target property and its C1 Au occurrence is situated along the Arrow fault which has been identified in locations such as the Arrow pit and the Hislop Mine. Evidence of the Arrow fault on GMEI's Golden Target property is provided by east-west bearing magnetic and electro-magnetic anomalies, the presence of alteration patterns, concentrations of gold and base-metals, and sufficient structural evidence on surface. The Arrow fault is presented as a splay off the DPFZ and interpreted to transect the Golden Target property and represent important targets for Au mineralization.

Figure 7.7 Schematic diagram illustrating the structural position of the Golden Target property in relation to the Arrow Fault and DPFZ (after Andrews Gold Fields report).

GMEI has completed a detailed airborne magnetic survey over a portion of the Golden Target property in order to refine the structural interpretation of the project for targeting purposes.

Boundaries between competent granitoids and ductile greenstone are also a common site for gold deposition in this environment. In orogenic belts with abundant pre-gold granitic intrusions, particularly in Precambrian granite-greenstone terranes, the contact between the rigid granitic bodies and the more ductile volcano-sedimentary sequences are common sites of ore-fluid infiltration and potential gold deposition. GMEI is also targeting the areas surrounding the Watabeag pluton for gold deposits in this environment as well as within the pluton for mineralization with similarities to the Egan gold occurrence located west of the property.

7.2.3 Alteration & Metamorphism

The project area has been subjected to greenschist metamorphic grade and narrow contact metamorphism associated with the Watabeag pluton. Hydrothermal alteration is evident associated with quartz veining and includes carbonation, silicification and lesser epidote and hematite. Brecciation associated with the silicification is common.

7.3 Other Commodity Potential

The potential for orogenic Au and VMS-style base metal deposit within the project area is provided by the mineral occurrences within the project area and mineral occurrences proximal to the project area and on geologic trend.

Potential for other commodities has not been thoroughly investigated or established in the field.

8 DEPOSIT TYPES

The geological and structural settings of the Golden Target project suggest a strong possibility for orogenic style Au mineralization. The most prominent Au mineralization within the project area is classified as orogenic with the principal Au mineralization being shear-hosted. The possibility of granite-related Au mineralization has also been identified in the project area.

Orogenic Au deposits are typified by quartz-dominant vein systems with ~3-5% sulfide minerals, mainly Fe-sulfides, and ~5-15% carbonates minerals. Albite, white mica or fuchsite, chlorite, scheelite and tourmaline are also common gangue phases in veins in greenschist-facies host rocks. Gold to silver ratios range from 10 (normal) to 1 (less common), with ore hosted in the veins and elsewhere in sulphidized wall rocks. Gold grades are relatively high, historically having been in the ~5-30 g/t range. Sulphide mineralogy commonly reflects the lithogeochemistry of the host rocks.

These deposits exhibit strong lateral zonation of alteration phases from proximal to distal assemblages on scales of metres. Mineralogical assemblages within the alteration zones generally vary with wall rock composition and include carbonates (ankerite, dolomite and calcite), sulfides (pyrite, pyrrhotite and arsenopyrite), alkali metasomatism (sericitization, fuchsite, biotite, or K-feldspar), albitization and chlorite alteration of mafic minerals.

There is strong structural control of the mineralization at a variety of scales with deposits normally sited in second or third order structures, most commonly near large-scale structures. Although the controlling structures are commonly ductile to brittle in nature, they are highly variable in type.

Figure 8.1 Schematic presentation for the genesis of orogenic gold deposits.

The Golden Target project is located near the DPFZ major crustal structure which provides significant opportunity to access deep seated fluids for the transportation of metals including gold. Several major E-W trending structures observed within the Golden Target project area show significant displacement and are interpreted to act as potential fluid conduits to the N-E trending structures interpreted as possibly hosts for the mineralization.

9 **EXPLORATION**

GMEI carried out compilation, prospecting, sampling, geochemistry, and geophysical surveys on the Golden Target property as part of its continued systematic exploration effort focussed towards the discovery of an economic gold deposit. Details of the previous field activities by GMEI are outlined in the 2017 NI 43-101 report (Paiement JP and Scodnick J, 2017, Golden Target Project Matheson – Ramore Region, Ontario).

The Golden Target block is host to historic Au and base metal mineralized occurrences and the GMEI newly discovered C1 Au occurrence, associated with local and interpreted regional structures. These known occurrences are concentrated in the northeastern portion of this claim cell block where outcrop is more

frequent, and access is best developed. The work reported herein was strategically focussed in this area where known mineralized occurrences offer insight and provide anchors for the interpretation of exploration results and assist in the development of an interpretative geological model applied to targeting for further field activities.

Work Classification	Comment			
Compilation	Integration of historic work to develop targets for field investigation			
Prospecting	Field examination of targets to prioritize for detailed investigation and drilling.			
	Historic mineral occurrences located and verified. Led to the discovery of the			
	C1 and GT2 Au occurrences.			
Surface geophysical surveys	VLF surveys were completed on select areas to define drill targets.			
Drilling	15 holes totalling 2,112.4 metres completed on 5 targets areas			
Airborne Geophysical Surveys	Detailed AMag/VLF survey total 766 line kilometres completed over the NE			
	portion of the property to enhance geological interpretation focused on			
	structure.			

Table 9.1Summary of GMEI exploration work on the Golden Target property.

Excludes 2012-15 work on the CanREE project which is not part of this report.

9.1 Compilation

Ongoing compilation for the Golden Target project has two primary objectives:

- Identify and characterize all known mineralized occurrences on the property and those proximal to the property and establish the location data to be used in the field verification of these sites.
- Examine all relevant geological information for the refinement of a geological map for the project, focused on structural interpretation towards the orogenic gold deposit model. The relevant data includes airborne geophysical information used to establish geological domains and structural trends.

The compiled information is used to develop the exploration plan. Results of the field activities is integrated into the compiled data on an ongoing and iterative basis to establish each follow up field program. In some instances poor location information from historic work necessitated the use of old air photos to locate some sites.

The Golden Target Project is covered by the Ontario Geological Survey (OGS) regional magnetic and gravity surveys, which can be accessed via the OGS website. This survey data was used by the author to conduct an initial regional structural interpretation and augmented by an interpretation of the magnetic survey conducted by Hayden R. Butler in 2014 (figure 7.5). On a target scale, available historic surveys were used to augment the regional interpretation.

9.2 Prospecting

The 2020 prospecting program was directed towards locating additional historic mineral occurrences with a gold focus. Building on results of previous field programs and utilizing new exposure and access due to logging activity, traverses were completed along new access trails and directed to identify specific mineral occurrences. The historic Taylor, Devil's Elbow North, and Devil's Elbow South, Sylvanite, and Turcott mineral occurrences were located. Previously identified occurrences Campbell-Moore, GT2 and C1 were revisited for closer examination and follow up planning. Prospecting was performed in a series of field traverses along known and newly identified logging roads, trails, and pathways.

Once historic mineralized occurrences were located in the field, initial sampling was carried out and requirements for future systematic sampling noted; including stripping, trenching, and gridding in preparation for surface geophysical surveys and diamond drilling. A number of the historic mineralized occurrence locations were poorly documented and required extra attention to locate in the field.

A total 24 samples from outcrop, float and drill core were submitted for analyses during 2020. Outcrop and float samples were collected where the presence of mineralization was noted in the form of sulphide.

TARGET AREA	SAMPLE RANGE	HIGHLIGHTS				
	B00127502-B00127503	No significant results				
CI Au Occurrence	628160-628168	1.25ppm Au 628161 and 1.49ppm Au 628165				
GT2 Au Occurrence	628169-628170					
Turcott Au Occurrence	628171-628174	No significant results				
Drill Hole CR14-02	628175-628177					
Drill Hole CR14-18	627178, 629179, 628181					
Drill Hole CR14-04	628180	No significant results				
Devil's Elbow-Sylvanite	620102 620104					
Occurrence	020102-020104					
Drill Hole CR14-24	628185-628186					

Table 9.2Summary of Samples collected in 2020 and presented in this report.

Drill core resampling was completed at the GMEI camp.

Prospecting and sampling were successful in locating historic mineralized occurrences and in expanding the GMEI C1 Au occurrence. The results from these activities will be utilized to plan further exploration activities over this underexplored area, leading to the development of drill targets. Sample locations were recorded using hand-held GPS units and the UTM NAD83 Zone 17 coordinate system.

Additional claim cells were acquired as part of GMEI's ongoing property acquisition strategy.

The C1 Au occurrence was initially discovered by GMEI in 2015 during a grid sampling program and an assay of 281 ppb Au was returned. A follow up site visit to C1, also in 2015 resulted in taking 10 grab samples. The samples yielded results from 195 ppb to 3,770 ppb (0.195 g/t to 3.77 g/t Au). During its 2015 field program an additional 7 samples were selected which returned assays from 4 ppb to 13,100 ppb Au (13.1 g/t Au) taken from a narrow ~40cm wide section of quartz vein breccia hosted in mafic volcanics hosted with varying amounts of pyrite mineralization from 1% to more than 40%. Varying degrees of silicification are present as well. During the fall of 2020 a total of 8 more samples were selected at C1. The outcrop was stripped some more and resulted in assays ranging from 0.01 g/t Au to 1.49 g/t Au. The vein was pinched out at surface after a few metres. The vein is composed of quartz with pyritic mafic wall rock inclusions, containing up to 10% medium-grained pyrite overall. The mafic volcanic wall rock bears abundant pyrite over decametres adjacent to the vein, but appears otherwise unaltered and undeformed. The vein is oriented at 200°/60°.

The C1 gold occurrence was sampled in detail over a short strike length in an effort to characterize the gold mineralization. A surface I.P. survey is planned to extend this gold occurrence and provide a broader area for follow detailed sampling. Nine samples were obtained from the C1 gold occurrence during the

2020 field program (628160-628168) including 3 samples combined to form a single "bulk" sample (628166-628168) which were not submitted for assay during 2020.

Figure 9.1 2020 field program sample locations.

9.3 Surface Geophysical Surveys

Utilization of surface geophysical survey methods is planned to define and prioritize drill targets. Targeted gold mineralization is commonly associated with weak pyrite mineralization and spatially associated with structures whereas base metal mineralization is anticipated to host stronger concentrations of sulphide. Typical orogenic Au mineralization normally displays low conductivity due to the silicification of the host rock and little to no interconnectivity of the sulphides. In other instances, intense shearing comprised of stringer sulphides hosted within quartz veins will have sufficient conductivity to generate an anomaly using EM geophysical methods.

A variety of surface geophysical surveys will be applied dependent on the characteristics of the target mineralization, the conductive response of the sulphide content. GMEI is currently planning an Induced Polarization survey to delineate the C1 Au occurrence along strike and investigate the potential for similar parallel zones. This occurrence is host to weak pyrite mineralization detectable using the I.P. method. HLEM and TEM electromagnetic ("EM") methods will be applied to targets anticipated to contain larger amounts of sulphide and generate overall conductivity. For definition of the structures within the project area, GMEI has enlisted the VLF EM method.

VLF surveys were the primary geophysics tool used by GMEI to-date. It was used to highlight conductivity and resistivity contrasts between rock formations and conductivity of structures. Typically, the sulphide content of orogenic gold deposit is not enough to create any conductivity signature in these types of surveys. The results are used to interpreted structures as target locations for the accumulation of a gold mineralization.

A VLF survey was conducted by GMEI in 2014. The results highlighted a number of conductive lineaments that were categorized as exploration targets and became the focus of the follow drill programs in 2014-15 & 2017 totaling 15 holes for 2,082.5m. Only 9 drill holes were completed during the spring 2017 drill campaign, totaling 966 linear meters. No significant results were obtained in this limited drill program. Note that drill hole GT2017-14 assayed 0.35 grams per ton Au between 167.70 and 168.14 meters. During 2014-15 a total of 6 holes were drilled for 1,116m. No significant assays of economic importance were returned. GT2015-06 returned two anomalous values within a mafic volcanic rock and from 35.9m to 36.75m which yielded 0.24 gpt Au; and from 36.75m to 38.00m which yielded 0.14 gpt Au. Both of these samples were characterized by a shear zone containing up to 40% epidote, 5% calcite, and 5% hematite.

9.4 Airborne Magnetic and VLF Survey

Due to a scarcity of outcrop and limited historic exploration results, available regional airborne magnetic data forms the basis for the historic geological interpretation of the project area. The broad line spacing of historic airborne surveys provides sufficient data to identify the larger features of the basement geology but is unable to resolve the detailed structures. In order to refine the geological interpretation of the Golden Target property, GMEI completed a detailed airborne magnetic and VLF survey over a portion of the property in 2020.

An airborne magnetic survey was completed over the northeastern portion of the Golden Target block by MPX Geophysics Ltd. to enhance the geologic knowledge over this area with poor outcropping of the bedrock. This area is host to the majority of known mineralized occurrences and interpreted to be "on trend" with the Arrow Gold Deposit located immediately east of the GMEI property. Reinterpretation of the geology using the airborne magnetic survey results is focussed on the identification of favourable structures, anchored by the known mineralized occurrences, for follow up ground investigation.

A total of 766 line-km airborne magnetic data was collected using a Cessna C206 platform at an 80m mean terrain clearance and nominal 75m line spacing, bidirectionally on E-W and N-S oriented lines. The survey was completed in the period October 30 to November 7, 2020. VLF data was also collected simultaneously utilizing both the NAA Cutler Main and NLM La Moure North Dakota transmitters. The total area covered by the surveys was 27.92 km2.

Figure 9.4 Airborne VLF survey, in-line quadrature using E-W line direction data.

Complete details of the airborne survey are available in the MPX Geophysics Ltd. report provided in appendix 4.

10 DRILLING

The 2020 field program did not include drilling. Previous diamond drilling to test for gold mineralization on the Golden Target property completed by GMEI was completed in 2014 to 2017 and totalled 15 holes. The drilling targeted VLF conductors for gold mineralization. Anomalous Au concentrations were intersected but did not meet economic grades. Drill core from these programs was logged and sampled at the GMEI's facilities in Ramore Ontario.

Figure 10.1 Location of GMEI diamond drill holes targeting Au mineralization.

Table 10.1Summary of GMEI diamond drill holes targeting gold mineralization (2014-2017).

		•	,
Project	Years	Holes	Metres
Golden Target Au	2014 to 2015 2017	15	2,112
Golden Target CanREE	2014 to 2015	38	3,132
Historic non GMEI DD	1975 1980 to 1985	28	4,188
Historic non GMEI RC	1947 1956 1966 1970 to 1972 1981 1984 1989 to 1991 1996	51	1,132
Totals		132	10,564

A summary of GMEI and historic holes is provided in appendix 3. Details are presented in the GMEI 2017 technical report (Paiement JP and Scodnick J, 2017, Golden Target Project Matheson – Ramore Region, Ontario).

10.1 Drill Hole Surveys

No in-hole surveys were conducted by GMEI.

11 SAMPLE PREPARATION, ANALYSES AND SECURITY

A total 26 samples were submitted for analyses to SGS Laboratory in Sudbury Ontario, during the 2020 field program.

11.1 Sample Collection and Transportation

All samples (drill core and field grab samples) were placed inside plastic sample bags with a sample tag that contains the sample number, location, and description. The samples were then collated into labelled and secured rice bags for transportation from the GMEI exploration to SGS Minerals Services in Sudbury, Ontario by the author of this report.

The chain of custody was assumed by the lab upon delivery of the samples.

11.2 Core Logging and Sample

Drill core samples selected from the 2014 program were cut into half of the available core using a tile saw. One half was removed for analysis and the other half kept in the original core box securely stored for future reference.

11.3 Analytical

SGS completed sample preparation at its Sudbury facilities and forwarded pulps to its Vancouver laboratory for analyses. SGS completed various analyses including fire assay, four acid digestion and sodium peroxide fusion per assay certificates provided in appendix 5.

uble 11.1 Summary of Assay Certificate pertaining to sumples in tuble 5.2							
CERTIFICATE	DATE	SPLES	SAMPLE RANGE	CNTRL SPLE			
BBM20-05200-BBM_U0004545288	2020	15	628160-628174	8			
BBM20-05355-BBM_U0004656945	2020	12	628175-628186	7			
BBM20-04929_BBM_U0004297294	2020	2	B00127502, B00127503	4			

Table 11.1Summary of Assay Certificate pertaining to samples in table 9.21

² Control samples include standards, blanks, duplicates, and repeats. Certified control samples provided by SGS laboratory.

11.3.1 Control Samples

No control standards were inserted by GMEI for the 26 samples submitted during the 2020 field program. For this program GMEI relied on the SGS control samples to monitor the quality of the assay results.

11.3.2 QA/QC Data Verification

Nineteen control samples were utilized by SGS included 7 blanks, 6 replicates, and 6 certified standards (PGM27, OREAS601, OREAS915, & OREAS250).

12 DATA VERIFICATION

The author actively participated in the 2020 field program and personally inspected samples from the field and drill core resampled.

13 MINERAL PROCESSING AND METALLURGICAL TESTING

No mineral processing or metallurgical testing has been undertaken on the project.

14 MINERAL RESOURCE ESTIMATES

No resource estimations have been completed for the project.

15 MINERAL RESERVE ESTIMATES

No reserve estimations have been completed for the project.

16 MINING METHODS

No applicable.

17 RECOVERY METHODS

No applicable/

18 PROJECT INFRASTRUCTURE

Not applicable.

19 MARKET STUDIES AND CONTRACTS

No market studies have been undertaken for the project.

20 ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

No community consultation has been undertaken beyond those required to obtain work permits.

20.1.1 Aboriginal Consultation

Consultations with First Nations groups have been completed successfully for the purposes of carrying out field programs.

21 CAPITAL AND OPERATING COSTS

Not applicable.

22 ECONOMIC ANALYSIS

Not applicable.

23 ADJACENT PROPERTIES

There are currently no adjacent properties that influence the GMEI activities.

GMEI gives strong consideration to the geological information available from nearby mineral occurrences and mineral deposits to develop its exploration strategy and from time to time may take advantage by acquiring additional lands as they become available.

24 OTHER RELEVANT DATA AND INFORMATION

The Golden Target property abuts Wildgoose Outwash Provincial Park in its southwestern border. This may have implications for future permitting applications and should be considered when planning exploration on this property.

25 INTERPRETATION AND CONCLUSIONS

Exploration of the Golden Target project is focused on the discovery of economic gold deposits utilizing the orogenic style gold mineralization model as a guide. Key indicators for the discovery potential on the Golden Target block are;

- Presence of historic Au occurrences on the property.
- Proximity of historic Au occurrences and past Au producers to the Property (Black Fox, Goldpoint, Ross, Golden Arrow mines).
- Interpreted transection of the Property by favorable structures supported by remote sensing data and anchored by existing mineralized occurrences and deposits.
- The proximal location relative to prominent and vastly productive Destor-Porcupine fault zone ("DPFZ") which is host to numerous Au producers and the beneficiary of substantial ongoing exploration activities; a World-class metallotect.
- The presence of a large felsic batholith on the Property, the Watabeag Pluton, supporting a general geological model for the deposition of Au mineralization.

Previous work by GMEI utilizing these indicators in the execution of exploration programs resulted in the discovery of the new Au occurrence at "C1".

The 2020 exploration program represents a continuation of the methodical exploration approach of the GMEI Golden Target property directed towards the discovery of economic gold deposits. Based upon desk top compilation including examination of historic air photos and maps, the 2020 activities focussed on the field identification of historic mineral occurrences and establishing logistics for follow up programs.

The airborne geophysical surveys were implemented to assist in the refinement of the project geology with a view to identifying favourable structures and geological horizons for examination in the field. The results of the survey will be integrated with geological information thus far obtained from historic data and GMEI field activities.

A significant portion of the large GMEI Golden Target property remains unexplored. Its location with respect to known gold mineralization and deposits associated with the proximal Destor-Porcupine fault zone and interpreted associated structures transgressing the Golden Target block provide ample encouragement for continued exploration. Continued prospecting and surface geophysical surveys are planned to develop targets for drill testing.

26 RECOMMENDATIONS

The Golden Target property remains under explored. The paucity of historic exploration and scarce outcropping of basement rocks have hindered the development of the geological understanding of this area within close proximity of the renowned and highly productive Destor-Porcupine fault zone. Continuation of a dual exploration strategy is recommended for the GMEI properties to develop the mineral potential of this area via (i) a regional approach designed to identify favourable features for field follow up, and (ii) a target approach to evaluate in detail the known mineral occurrences.

These programs call for the continued use of airborne geophysical and surface geophysical surveys and prospecting with ongoing geological and structural interpretation. Development of priority drill targets will be based on the integration of prospecting results (sampling, stripping, trenching) and surface geophysical survey results (I.P., HLEM, TEM). Drill hole EM surveys should be considered where favorable mineralization is intersected or where the conductive target remains elusive.

A budget of \$1,280,000 is proposed as follows:

Proposed Exploration budget	
Prospecting, Compilation & Field Verification	\$ 60,000
Surface Geophysical Surveys (I.P. & EM)	\$ 60,000
Geological Mapping: 60 days at \$1000/day	\$ 60,000
Diamond Drilling: NQ Core, 5,000m at \$200/m	\$1,000,000
Airborne Magnetic & VLF Survey:	<u>\$ 100,000</u>
Total	\$1,280,000

27 REFERENCES

- Ayer, J.A., Thurston, P.C., Bateman, R., Dubé, B., Gibson, H.L., Hamilton, M.A., Hathway, B., Hocker, S.M., Houlé, M.G., Hudak, G., Ispolatov, V.O., Lafrance, B., Lesher, C.M., MacDonald, P.J., Péloquin, A.S., Piercey, S.J., Reed, L.E. and Thompson, P.H. 2005. Overview of results from the Greenstone Architecture Project: Discover Abitibi Initiative Ontario Geological Survey, Open File Report 6225, 84p
- Ayres, L.D. and Thurston P.C. 1985, Archean Supracrustal sequences in the Canadian Shield an Overview. Geological Association of Canada Special Paper.
- Barnes, S.J. and Naldrett A. J. 1987. Fractionation of Platinum Group Elements and gold in some komatiites of the Abitibi Greenstone Belt, Northern ON, Economic Geology.
- Brownlee, D.J. 1988 Geological report Vimy Ridge Property, Pelangio-Larder Mines Ltd.
- Corfu F, Krough T.E., Kwok, Y.Y. and Jensen L.S. 1989; U-Pb zircon geochronology in the southwestern Abitibi greenstone belt, Canadian Journal of Earth Sciences.
- Fyon, J.A., and Green, A.H., Geological Survey of Canada, Open File 2161.
- Fyon and S. Jackson, 1991, District Geology, Central Abitibi Greenstone Belt, Geology and ore deposit of Timmins District, Ontario (Field trip 6).
- Green A.H. 1990. Ontario Geological Survey, Open File Report 6154, 146p.
- Groves et al. Orogenic Gold Deposits: A Proposed Classification in the Context of their Crustal Distribution and Relationship to Other Gold Deposit. Ore Geology Reviews, vol. 13, 1998, pp. 7-27.
- Houlé, M.G., Ayer, J.A., Baldwin, G., Berger, B.R., Dinel, E., Fowler, A.D., Moulton, B., Saumur, B.--M. and Thurston, P.C. 2008. Field trip guidebook to the stratigraphy and volcanology of supracrustal assemblages hosting base metal and gold mineralization in the Abitibi greenstone belt, Timmins, Ontario.
- Jensen L.S. and Langford F.F. 1985, Geology and Petrogenesis of the Archean Abitibi Belt in the Kirkland Lake Area, ON, Ontario Geological Survey, Miscellaneous paper 123, 130p. Accompanied by Maps.
- Leahy, E.J., 1964. Currie and Bowman Townships, Ontario Department of Mines Map 2071. 1 inch to ½ mile geological map sheet.
- Paiement JP and Scodnick J 2017. Golden Target Project Matheson Ramore Region, Ontario.
- Piroshco and Kettles K. 1988, Geology of Tisdale: in summary of Fieldwork and other activities. Ontario geological survey.
- SGS Canada Inc. and Sierra Geological Consultants Inc., 2017 Technical Report on the Golden Target Property for GOOD Mining Exploration Inc.
- Watts, Griffis and McOuat Limited; 1988 Assessment report on the Hyde claims of McCann Township, Larder Lake Mining Division for Lencourt Limited.

28 CERTIFICATE OF QUALIFIED PERSON

I, Joel Scodnick, B.Sc., P.Geo., as an author of this report entitled "Golden Target Gold Project Ontario Canada NI 43-101 Technical Report" prepared for GOOD Mining Exploration Inc. and dated January 22, 2021 (with an effective date of January 22, 2021), do hereby certify that:

- 1. I am an independent consultant and President of SIERRA Geological Consultants Inc. of 45 Countryside Drive, Sudbury, ON P3E 5A2.
- 2. I am a graduate of Concordia University located in Montreal Quebec Canada with a Bachelor of Science degree in 1982.
- 3. I am a member in good standing of the Association of Professional Geoscientists of Ontario since 198x; license number 1065.
- 4. I have practiced my profession continuously for 42 years. My relevant experience for the purpose of this report includes planning, management, and implementation of exploration for precious metals deposit, due diligence, project valuations, budgeting, and reporting.
- 5. I have read the definition of "Qualified Person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association as defined in NI 43-101 and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purpose of NI 43-101.
- 6. I visited the Golden Target Project property on many occasions and most recently from October 1 to October 22, 2021.
- 7. I am responsible for the overall preparation of the Technical Report.
- 8. I am independent of the issuer applying the test set out in Section 1.5 of NI 43-101.
- 9. I have had no prior involvement with the property that is the subject of the Technical Report.
- 10. I have read the NI 43-101, and the Technical Report has been prepared in compliance with NI 43-101 and Form 43-101F1.
- 11. At the effective date of the Technical Report, to the best of my knowledge, information, and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 12. I give consent to GOOD Mining Exploration Inc., upon written approval to submit this report to all Regulatory Authorities for filing purposes and to make it available to the public.

Signed at Sudbury, Ontario Canada this 2nd day of March 2021.

"signed and sealed original on file"

Joel Scodnick, B.Sc., P. Geo., QP Principal Consultant SIERRA Geological Consultants Inc.

29 APPENDIX 1 – GMEI PROPERTY DETAILS

Claim Number	Anniversary Date	Tenure Status	Total Work	Work Required	Total Reserve
559417	2021-09-20	Active	0	400	0
604493	2022-08-03	Active	0	400	0
604494	2022-08-03	Active	0	400	0
604495	2022-08-03	Active	0	400	0
604496	2022-08-03	Active	0	400	0
604497	2022-08-03	Active	0	400	0
604498	2022-08-03	Active	0	400	0
604499	2022-08-03	Active	0	400	0
604500	2022-08-03	Active	0	400	0
613224	2022-09-28	Active Pending	0	400	0
613225	2022-09-28	Active Pending	0	400	0
Total			0	4400	0

Table 29.1DEFIANCE block claim cells (11).

Table 29.2GOLDEN TARGET block claim cells (715).

Claim					
Number	Anniversary Date	Mining Claim Type	Total Work	Work Required	Total Reserve
210824	2021-04-08	Single Cell Mining Claim	400	200	0
163829	2021-04-20	Single Cell Mining Claim	400	400	0
176017	2021-04-20	Single Cell Mining Claim	800	400	0
193388	2021-04-20	Single Cell Mining Claim	600	400	0
222604	2021-04-20	Single Cell Mining Claim	800	400	0
242743	2021-04-20	Single Cell Mining Claim	800	400	0
242744	2021-04-20	Single Cell Mining Claim	800	400	0
250094	2021-04-20	Single Cell Mining Claim	800	400	0
250127	2021-04-20	Single Cell Mining Claim	800	400	0
278628	2021-04-20	Single Cell Mining Claim	800	400	0
297300	2021-04-20	Single Cell Mining Claim	800	400	0
309976	2021-04-20	Single Cell Mining Claim	800	400	0
309977	2021-04-20	Single Cell Mining Claim	600	400	0
207219	2021-05-02	Single Cell Mining Claim	400	200	0
266500	2021-05-02	Boundary Cell Mining Claim	400	200	0
273111	2021-05-02	Single Cell Mining Claim	400	200	0
273112	2021-05-02	Single Cell Mining Claim	400	200	0
303585	2021-05-02	Single Cell Mining Claim	400	200	0
303599	2021-05-02	Single Cell Mining Claim	400	200	0
310446	2021-05-02	Single Cell Mining Claim	400	200	0
100304	2021-06-05	Single Cell Mining Claim	800	400	0
101969	2021-06-05	Single Cell Mining Claim	800	400	0
115950	2021-06-05	Single Cell Mining Claim	800	400	0
127616	2021-06-05	Single Cell Mining Claim	800	400	0
128943	2021-06-05	Single Cell Mining Claim	800	400	0
128944	2021-06-05	Single Cell Mining Claim	800	400	0
144804	2021-06-05	Single Cell Mining Claim	800	400	0
154888	2021-06-05	Single Cell Mining Claim	800	400	0
156903	2021-06-05	Single Cell Mining Claim	800	400	0
162912	2021-06-05	Single Cell Mining Claim	468	200	0

·	·		•		•
171512	2021-06-05	Single Cell Mining Claim	800	400	0
200769	2021-06-05	Single Cell Mining Claim	800	400	0
202724	2021-06-05	Single Cell Mining Claim	400	200	0
204035	2021-06-05	Single Cell Mining Claim	800	400	0
204036	2021-06-05	Single Cell Mining Claim	800	400	0
212131	2021-06-05	Single Cell Mining Claim	800	400	0
230933	2021-06-05	Single Cell Mining Claim	800	400	0
230934	2021-06-05	Single Cell Mining Claim	400	200	0
278152	2021-06-05	Single Cell Mining Claim	800	400	0
279669	2021-06-05	Single Cell Mining Claim	800	400	0
287473	2021-06-05	Single Cell Mining Claim	800	400	0
288891	2021-06-05	Single Cell Mining Claim	800	400	0
294912	2021-06-05	Single Cell Mining Claim	800	400	0
302697	2021-06-05	Single Cell Mining Claim	800	400	0
312729	2021-06-05	Single Cell Mining Claim	400	200	0
313392	2021-06-05	Single Cell Mining Claim	800	400	0
313393	2021-06-05	Single Cell Mining Claim	800	400	0
103205	2021-07-10	Single Cell Mining Claim	400	200	0
103206	2021-07-10	Single Cell Mining Claim	800	400	0
106611	2021-07-10	Single Cell Mining Claim	800	400	0
106612	2021-07-10	Single Cell Mining Claim	400	200	0
110482	2021-07-10	Single Cell Mining Claim	400	200	0
117333	2021-07-10	Single Cell Mining Claim	800	400	0
119312	2021-07-10	Single Cell Mining Claim	400	200	0
121198	2021-07-10	Single Cell Mining Claim	800	400	0
121318	2021-07-10	Single Cell Mining Claim	400	200	0
122707	2021-07-10	Single Cell Mining Claim	800	400	0
123651	2021-07-10	Single Cell Mining Claim	800	400	0
123652	2021-07-10	Single Cell Mining Claim	800	400	0
124067	2021-07-10	Single Cell Mining Claim	800	400	0
127077	2021-07-10	Single Cell Mining Claim	400	200	0
127492	2021-07-10	Single Cell Mining Claim	400	200	0
132807	2021-07-10	Single Cell Mining Claim	400	200	0
132808	2021-07-10	Single Cell Mining Claim	400	200	0
134211	2021-07-10	Single Cell Mining Claim	800	400	0
135571	2021-07-10	Single Cell Mining Claim	400	200	0
138365	2021-07-10	Single Cell Mining Claim	800	400	0
141602	2021-07-10	Single Cell Mining Claim	800	400	0
150158	2021-07-10	Single Cell Mining Claim	800	400	0
150159	2021-07-10	Single Cell Mining Claim	800	400	0
150160	2021-07-10	Single Cell Mining Claim	800	400	0
158476	2021-07-10	Single Cell Mining Claim	800	400	0
159656	2021-07-10	Single Cell Mining Claim	400	200	0
179421	2021-07-10	Single Cell Mining Claim	800	400	0
179422	2021-07-10	Single Cell Mining Claim	800	400	0
180511	2021-07-10	Single Cell Mining Claim	800	400	0
184824	2021-07-10	Single Cell Mining Claim	800	400	0
185219	2021-07-10	Single Cell Mining Claim	800	400	0
186199	2021-07-10	Single Cell Mining Claim	800	400	0
186573	2021-07-10	Single Cell Mining Claim	800	400	0
188319	2021-07-10	Single Cell Mining Claim	400	200	0
189921	2021-07-10	Single Cell Mining Claim	400	200	0

193317	2021-07-10	Single Cell Mining Claim	400	200	0
198905	2021-07-10	Single Cell Mining Claim	800	400	0
198906	2021-07-10	Single Cell Mining Claim	800	400	0
200248	2021-07-10	Single Cell Mining Claim	800	400	0
200506	2021-07-10	Single Cell Mining Claim	400	200	0
201067	2021-07-10	Single Cell Mining Claim	800	400	0
203166	2021-07-10	Single Cell Mining Claim	400	200	0
208407	2021-07-10	Single Cell Mining Claim	400	200	0
208951	2021-07-10	Single Cell Mining Claim	400	200	0
208952	2021-07-10	Single Cell Mining Claim	400	200	0
215416	2021-07-10	Single Cell Mining Claim	800	400	0
216746	2021-07-10	Single Cell Mining Claim	400	200	0
227826	2021-07-10	Single Cell Mining Claim	400	200	0
227827	2021-07-10	Single Cell Mining Claim	400	200	0
228842	2021-07-10	Single Cell Mining Claim	400	200	0
228843	2021-07-10	Single Cell Mining Claim	400	200	0
228844	2021-07-10	Single Cell Mining Claim	400	200	0
236192	2021-07-10	Single Cell Mining Claim	800	400	0
237058	2021-07-10	Single Cell Mining Claim	800	400	0
237059	2021-07-10	Single Cell Mining Claim	800	400	0
242690	2021-07-10	Single Cell Mining Claim	400	200	0
246285	2021-07-10	Single Cell Mining Claim	400	200	0
246567	2021-07-10	Single Cell Mining Claim	800	400	0
253515	2021-07-10	Single Cell Mining Claim	800	400	0
254351	2021-07-10	Single Cell Mining Claim	400	200	0
254352	2021-07-10	Single Cell Mining Claim	800	400	0
255620	2021-07-10	Single Cell Mining Claim	800	400	0
267572	2021-07-10	Single Cell Mining Claim	400	200	0
267573	2021-07-10	Single Cell Mining Claim	400	200	0
269735	2021-07-10	Single Cell Mining Claim	800	400	0
273739	2021-07-10	Single Cell Mining Claim	400	200	0
273804	2021-07-10	Single Cell Mining Claim	800	400	0
275549	2021-07-10	Single Cell Mining Claim	800	400	0
275550	2021-07-10	Single Cell Mining Claim	400	200	0
278562	2021-07-10	Single Cell Mining Claim	400	200	0
282017	2021-07-10	Single Cell Mining Claim	800	400	0
287627	2021-07-10	Single Cell Mining Claim	400	200	0
287628	2021-07-10	Single Cell Mining Claim	400	200	0
294431	2021-07-10	Single Cell Mining Claim	800	400	0
299194	2021-07-10	Single Cell Mining Claim	800	400	0
299320	2021-07-10	Single Cell Mining Claim	800	400	0
300853	2021-07-10	Single Cell Mining Claim	400	200	0
300866	2021-07-10	Single Cell Mining Claim	800	400	0
302903	2021-07-10	Single Cell Mining Claim	800	400	0
302904	2021-07-10	Single Cell Mining Claim	400	200	0
303524	2021-07-10	Single Cell Mining Claim	800	400	0
304304	2021-07-10	Single Cell Mining Claim	800	400	0
304305	2021-07-10	Single Cell Mining Claim	800	400	0
306383	2021-07-10	Single Cell Mining Claim	400	200	0
311046	2021-07-10	Single Cell Mining Claim	800	400	0
315441	2021-07-10	Single Cell Mining Claim	400	200	0
320338	2021-07-10	Single Cell Mining Claim	400	200	0

320339	2021-07-10	Single Cell Mining Claim	400	200	0
323638	2021-07-10	Single Cell Mining Claim	800	400	0
329649	2021-07-10	Single Cell Mining Claim	400	200	0
329650	2021-07-10	Single Cell Mining Claim	800	400	0
335467	2021-07-10	Single Cell Mining Claim	400	200	0
335883	2021-07-10	Single Cell Mining Claim	400	200	0
339605	2021-07-10	Single Cell Mining Claim	400	200	0
3/3087	2021-07-10	Single Cell Mining Claim	800	400	0
102982	2021-08-11	Single Cell Mining Claim	800	400	0
102982	2021-08-11	Single Cell Mining Claim	800	400	0
102383	2021-08-11	Single Cell Mining Claim	800	400	0
105872	2021-08-11	Single Cell Mining Claim	800	400	0
100873	2021-08-11	Single Cell Mining Claim	800	400	0
105054	2021-08-11	Single Cell Mining Claim	400	200	0
110255	2021-08-11	Single Cell Mining Claim	400	200	0
110405	2021-08-11	Single Cell Mining Claim	800	400	0
1111/3	2021-08-11	Single Cell Mining Claim	800	400	0
1150/1	2021-08-11	Single Cell Mining Claim	800	400	0
11/359	2021-08-11		400	200	0
118291	2021-08-11	Single Cell Mining Claim	800	400	0
121066	2021-08-11	Boundary Cell Mining Claim	400	200	0
122211	2021-08-11	Single Cell Mining Claim	800	400	0
122245	2021-08-11	Single Cell Mining Claim	400	200	0
127112	2021-08-11	Boundary Cell Mining Claim	400	200	0
127113	2021-08-11	Boundary Cell Mining Claim	400	200	0
127567	2021-08-11	Single Cell Mining Claim	800	400	0
129980	2021-08-11	Single Cell Mining Claim	800	400	0
132539	2021-08-11	Single Cell Mining Claim	800	400	0
134998	2021-08-11	Single Cell Mining Claim	800	400	0
136264	2021-08-11	Single Cell Mining Claim	800	400	0
141081	2021-08-11	Single Cell Mining Claim	400	200	0
142107	2021-08-11	Single Cell Mining Claim	800	400	0
143799	2021-08-11	Single Cell Mining Claim	800	400	0
143800	2021-08-11	Single Cell Mining Claim	800	400	0
144494	2021-08-11	Single Cell Mining Claim	400	200	0
144758	2021-08-11	Single Cell Mining Claim	800	400	0
148749	2021-08-11	Single Cell Mining Claim	400	200	0
149140	2021-08-11	Single Cell Mining Claim	800	400	0
152623	2021-08-11	Single Cell Mining Claim	800	400	0
156443	2021-08-11	Single Cell Mining Claim	800	400	0
158524	2021-08-11	Single Cell Mining Claim	800	400	0
166229	2021-08-11	Single Cell Mining Claim	400	200	0
170959	2021-08-11	Single Cell Mining Claim	800	400	0
171442	2021-08-11	Single Cell Mining Claim	800	400	0
173139	2021-08-11	Single Cell Mining Claim	800	400	0
179062	2021-08-11	Single Cell Mining Claim	800	400	0
179063	2021-08-11	Boundary Cell Mining Claim	400	200	0
180167	2021-08-11	Single Cell Mining Claim	800	400	0
187618	2021-08-11	Single Cell Mining Claim	400	200	0
188392	2021-08-11	Single Cell Mining Claim	800	400	0
188393	2021-08-11	Single Cell Mining Claim	800	400	0
189218	2021-08-11	Single Cell Mining Claim	800	400	0
195487	2021-08-11	Single Cell Mining Claim	800	400	0

200698	2021-08-11	Single Cell Mining Claim	800	400	0
202050	2021-08-11	Single Cell Mining Claim	800	400	0
202182	2021-08-11	Single Cell Mining Claim	800	400	0
202183	2021-08-11	Single Cell Mining Claim	800	400	0
202184	2021-08-11	Single Cell Mining Claim	400	200	0
203240	2021-08-11	Single Cell Mining Claim	400	200	0
200695	2021-08-11	Single Cell Mining Claim	800	400	0
207137	2021-08-11	Single Cell Mining Claim	800	400	0
207138	2021-08-11	Single Cell Mining Claim	400	200	0
210748	2021-08-11	Single Cell Mining Claim	800	400	0
210749	2021-08-11		800	400	0
219168	2021-08-11	Single Cell Mining Claim	400	200	0
219169	2021-08-11		800	400	0
223197	2021-08-11	Single Cell Mining Claim	800	400	0
225265	2021-08-11	Single Cell Mining Claim	400	200	0
227111	2021-08-11	Single Cell Mining Claim	400	200	0
236271	2021-08-11	Single Cell Mining Claim	400	200	0
236274	2021-08-11	Single Cell Mining Claim	800	400	0
236275	2021-08-11	Single Cell Mining Claim	800	400	0
236314	2021-08-11	Single Cell Mining Claim	400	200	0
236315	2021-08-11	Single Cell Mining Claim	400	200	0
239661	2021-08-11	Single Cell Mining Claim	800	400	0
243350	2021-08-11	Single Cell Mining Claim	800	400	0
243351	2021-08-11	Single Cell Mining Claim	800	400	0
255719	2021-08-11	Single Cell Mining Claim	800	400	0
261613	2021-08-11	Single Cell Mining Claim	800	400	0
261614	2021-08-11	Single Cell Mining Claim	800	400	0
261615	2021-08-11	Boundary Cell Mining Claim	400	200	0
264498	2021-08-11	Single Cell Mining Claim	800	400	0
266851	2021-08-11	Single Cell Mining Claim	400	200	0
266852	2021-08-11	Single Cell Mining Claim	800	400	0
266853	2021-08-11	Single Cell Mining Claim	800	400	0
267174	2021-08-11	Single Cell Mining Claim	800	400	0
267611	2021-08-11	Single Cell Mining Claim	800	400	0
271220	2021-08-11	Single Cell Mining Claim	800	400	0
271221	2021-08-11	Single Cell Mining Claim	800	400	0
271238	2021-08-11	Single Cell Mining Claim	400	200	0
273805	2021-08-11	Single Cell Mining Claim	800	400	0
281676	2021-08-11	Boundary Cell Mining Claim	400	200	0
286416	2021-08-11	Single Cell Mining Claim	400	200	0
286417	2021-08-11	Single Cell Mining Claim	800	400	0
293728	2021-08-11	Single Cell Mining Claim	800	400	0
297919	2021-08-11	Single Cell Mining Claim	800	400	0
297920	2021-08-11	Single Cell Mining Claim	800	400	0
297921	2021-08-11	Single Cell Mining Claim	800	400	0
298976	2021-08-11	Boundary Cell Mining Claim	400	200	0
301119	2021-08-11	Single Cell Mining Claim	800	400	0
304273	2021-08-11	Single Cell Mining Claim	800	400	0
304306	2021-08-11	Single Cell Mining Claim	400	200	0
306950	2021-08-11	Single Cell Mining Claim	400	200	0
310074	2021-08-11	Single Cell Mining Claim	800	400	0
311101	2021-08-11	Single Cell Mining Claim	800	400	0
311121	2021-08-11	Single Cell Mining Claim	400	200	0
	2021 00 11	I Single cen mining claim	-00	200	

313123	2021-08-11	Single Cell Mining Claim	800	400	0
313357	2021-08-11	Single Cell Mining Claim	800	400	0
316115	2021-08-11	Single Cell Mining Claim	800	400	0
326433	2021-08-11	Single Cell Mining Claim	800	400	0
328240	2021-08-11	Single Cell Mining Claim	800	400	0
331167	2021-08-11	Single Cell Mining Claim	800	400	0
336004	2021-08-11	Boundary Cell Mining Claim	400	200	0
336005	2021-08-11	Boundary Cell Mining Claim	400	200	0
338180	2021-08-11	Single Cell Mining Claim	800	400	0
341798	2021-08-11	Single Cell Mining Claim	800	400	0
343061	2021-08-11	Single Cell Mining Claim	800	400	0
343088	2021-08-11	Single Cell Mining Claim	800	400	0
345219	2021-08-11	Single Cell Mining Claim	400	200	0
302737	2021-09-24	Single Cell Mining Claim	800	400	0
103162	2021-10-29	Single Cell Mining Claim	800	400	0
104276	2021-10-29	Single Cell Mining Claim	800	400	0
106049	2021-10-29	Single Cell Mining Claim	800	400	0
109678	2021-10-29	Single Cell Mining Claim	800	400	0
110782	2021-10-29	Single Cell Mining Claim	800	400	0
115821	2021-10-29	Single Cell Mining Claim	800	400	0
124378	2021-10-29	Single Cell Mining Claim	800	400	0
142684	2021-10-29	Single Cell Mining Claim	800	400	0
152368	2021-10-29	Single Cell Mining Claim	400	200	0
154980	2021-10-29	Single Cell Mining Claim	800	400	0
156858	2021-10-29	Single Cell Mining Claim	800	400	0
162873	2021-10-29	Single Cell Mining Claim	800	400	0
168981	2021-10-29	Single Cell Mining Claim	400	200	0
175283	2021-10-29	Single Cell Mining Claim	400	200	0
179327	2021-10-29	Single Cell Mining Claim	400	200	0
202366	2021-10-29	Single Cell Mining Claim	800	400	0
208803	2021-10-29	Single Cell Mining Claim	800	400	0
208917	2021-10-29	Single Cell Mining Claim	800	400	0
221870	2021-10-29	Single Cell Mining Claim	800	400	0
227770	2021-10-29	Single Cell Mining Claim	800	400	0
227771	2021-10-29	Single Cell Mining Claim	800	400	0
227772	2021-10-29	Single Cell Mining Claim	800	400	0
233773	2021-10-29	Single Cell Mining Claim	400	200	0
233882	2021-10-29	Single Cell Mining Claim	800	400	0
239707	2021-10-29	Single Cell Mining Claim	400	200	0
242020	2021-10-29	Single Cell Mining Claim	800	400	0
243164	2021-10-29	Single Cell Mining Claim	800	400	0
246060	2021-10-29	Single Cell Mining Claim	800	400	0
277698	2021-10-29	Single Cell Mining Claim	800	400	0
277699	2021-10-29	Single Cell Mining Claim	800	400	0
28/0/6	2021-10-29	Single Cell Mining Claim	800	400	0
291768	2021-10-29	Single Cell Mining Claim	400	200	0
291/69	2021-10-29	Single Cell Mining Claim	800	400	0
291//0	2021-10-29	Single Cell Mining Claim	800	400	0
294386	2021-10-29	Single Cell Mining Claim	800	400	0
295615	2021-10-29	Single Cell Mining Claim	800	400	0
302145	2021-10-29	Single Cell Mining Claim	400	200	0
323588	2021-10-29	Single Cell Mining Claim	400	200	U

1	1	1	1		1
323589	2021-10-29	Single Cell Mining Claim	800	400	0
326243	2021-10-29	Single Cell Mining Claim	800	400	0
335413	2021-10-29	Single Cell Mining Claim	800	400	0
335414	2021-10-29	Single Cell Mining Claim	800	400	0
336314	2021-10-29	Single Cell Mining Claim	400	200	0
338123	2021-10-29	Single Cell Mining Claim	800	400	0
308500	2022-03-22	Single Cell Mining Claim	654	200	0
181425	2022-04-07	Single Cell Mining Claim	1200	400	0
217397	2022-04-07	Single Cell Mining Claim	1200	400	0
100579	2022-04-08	Single Cell Mining Claim	1200	400	0
110206	2022-04-08	Single Cell Mining Claim	1200	400	0
110207	2022-04-08	Single Cell Mining Claim	1200	400	0
116977	2022-04-08	Single Cell Mining Claim	1000	400	0
138994	2022-04-08	Single Cell Mining Claim	600	200	0
141082	2022-04-08	Single Cell Mining Claim	600	200	0
142712	2022-04-08	Single Cell Mining Claim	600	200	0
143332	2022-04-08	Single Cell Mining Claim	600	200	0
143333	2022-04-08	Single Cell Mining Claim	1200	400	0
161050	2022-04-08	Single Cell Mining Claim	1200	400	0
172064	2022-04-08	Single Cell Mining Claim	1200	400	0
187624	2022-04-08	Single Cell Mining Claim	1200	400	0
199838	2022-04-08	Single Cell Mining Claim	1200	400	0
200805	2022-04-08	Single Cell Mining Claim	600	200	0
207144	2022-04-08	Single Cell Mining Claim	1200	400	0
208850	2022-04-08	Single Cell Mining Claim	600	200	0
208851	2022-04-08	Single Cell Mining Claim	1200	400	0
220920	2022-04-08	Single Cell Mining Claim	1200	400	0
220921	2022-04-08	Single Cell Mining Claim	1200	400	0
220922	2022-04-08	Single Cell Mining Claim	1200	400	0
220923	2022-04-08	Single Cell Mining Claim	1200	400	0
247805	2022-04-08	Single Cell Mining Claim	600	200	0
259822	2022-04-08	Single Cell Mining Claim	600	200	0
266427	2022-04-08	Single Cell Mining Claim	1200	400	0
266428	2022-04-08	Single Cell Mining Claim	1200	400	0
267435	2022-04-08	Single Cell Mining Claim	600	200	0
267436	2022-04-08	Single Cell Mining Claim	1200	400	0
273061	2022-04-08	Single Cell Mining Claim	1200	400	0
274875	2022-04-08	Single Cell Mining Claim	600	200	0
276832	2022-04-08	Single Cell Mining Claim	600	200	0
288928	2022-04-08	Single Cell Mining Claim	1000	400	0
288929	2022-04-08	Single Cell Mining Claim	1000	400	0
288930	2022-04-08	Single Cell Mining Claim	1327	400	0
313430	2022-04-08	Single Cell Mining Claim	600	200	0
323561	2022-04-08	Single Cell Mining Claim	600	200	0
325505	2022-04-08	Single Cell Mining Claim	1200	400	0
341802	2022-04-08	Single Cell Mining Claim	1200	400	0
107136	2022-04-20	Single Cell Mining Claim	1200	400	0
130763	2022-04-20	Single Cell Mining Claim	1200	400	0
130764	2022-04-20	Single Cell Mining Claim	1200	400	0
130765	2022-04-20	Single Cell Mining Claim	1200	400	0
146767	2022-04-20	Single Cell Mining Claim	1000	400	0
157442	2022-04-20	Single Cell Mining Claim	1000	400	0

1	1	1	1 1		1
163827	2022-04-20	Single Cell Mining Claim	1200	400	0
163828	2022-04-20	Single Cell Mining Claim	1200	400	0
163871	2022-04-20	Single Cell Mining Claim	1000	400	0
176069	2022-04-20	Single Cell Mining Claim	1200	400	0
176070	2022-04-20	Single Cell Mining Claim	1200	400	0
193386	2022-04-20	Single Cell Mining Claim	1200	400	0
193387	2022-04-20	Single Cell Mining Claim	1200	400	0
222643	2022-04-20	Single Cell Mining Claim	1000	400	0
230660	2022-04-20	Single Cell Mining Claim	1200	400	0
230661	2022-04-20	Single Cell Mining Claim	1000	400	0
278676	2022-04-20	Single Cell Mining Claim	400	200	0
297868	2022-04-20	Single Cell Mining Claim	1200	400	0
316067	2022-04-20	Single Cell Mining Claim	1000	400	0
316068	2022-04-20	Single Cell Mining Claim	1000	400	0
100281	2022-05-02	Single Cell Mining Claim	600	200	0
100708	2022-05-02	Single Cell Mining Claim	1200	400	0
103257	2022-05-02	Single Cell Mining Claim	600	200	0
110571	2022-05-02	Single Cell Mining Claim	600	200	0
110572	2022-05-02	Single Cell Mining Claim	1200	400	0
126306	2022-05-02	Single Cell Mining Claim	1000	400	0
127593	2022-05-02	Single Cell Mining Claim	1200	400	0
156112	2022-05-02	Single Cell Mining Claim	1200	400	0
156113	2022-05-02	Single Cell Mining Claim	600	200	0
156881	2022-05-02	Single Cell Mining Claim	1200	400	0
171697	2022-05-02	Single Cell Mining Claim	1200	400	0
172199	2022-05-02	Single Cell Mining Claim	1200	400	0
174439	2022-05-02	Single Cell Mining Claim	1200	400	0
188981	2022-05-02	Single Cell Mining Claim	600	200	0
190478	2022-05-02	Single Cell Mining Claim	1200	400	0
201433	2022-05-02	Single Cell Mining Claim	1200	400	0
201434	2022-05-02	Single Cell Mining Claim	1200	400	0
220412	2022-05-02	Single Cell Mining Claim	600	200	0
221564	2022-05-02	Single Cell Mining Claim	1200	400	0
228322	2022-05-02	Single Cell Mining Claim	100	400	0
228323	2022-05-02	Single Cell Mining Claim	1200	400	0
228384	2022-05-02	Single Cell Mining Claim	600	200	0
229582	2022-05-02	Single Cell Mining Claim	600	200	0
257525	2022-05-02	Single Cell Mining Claim	1200	400	0
267627	2022-05-02	Single Cell Mining Claim	1200	400	0
267779	2022-05-02	Single Cell Mining Claim	1200	400	0
267780	2022-05-02	Single Cell Mining Claim	1200	400	0
273885	2022-05-02	Single Cell Mining Claim	600	200	0
273886	2022-05-02	Single Cell Mining Claim	600	200	0
275531	2022-05-02	Single Cell Mining Claim	600	200	0
275605	2022-05-02	Single Cell Mining Claim	600	200	0
275606	2022-05-02	Single Cell Mining Claim	600	200	0
287671	2022-05-02	Single Cell Mining Claim	1200	400	0
294876	2022-05-02	Single Cell Mining Claim	1000	400	0
311464	2022-05-02	Single Cell Mining Claim	600	200	0
311702	2022-05-02	Single Cell Mining Claim	600	200	0
323684	2022-05-02	Single Cell Mining Claim	1200	400	0
323685	2022-05-02	Single Cell Mining Claim	1200	400	0

324179	2022-05-02	Single Cell Mining Claim	1200	400	0
324180	2022-05-02	Single Cell Mining Claim	1000	400	0
140098	2022-06-04	Single Cell Mining Claim	600	200	0
162573	2022-06-04	Single Cell Mining Claim	1200	400	0
114900	2022-06-05	Single Cell Mining Claim	1200	400	0
115822	2022-06-05	Single Cell Mining Claim	1200	400	0
125607	2022-06-05	Single Cell Mining Claim	1200	400	0
125609	2022-06-05	Single Cell Mining Claim	1200	400	0
125666	2022-06-05	Single Cell Mining Claim	1200	400	0
162177	2022-06-05	Single Cell Mining Claim	1200	400	0
164245	2022-06-05	Single Cell Mining Claim	1200	400	0
171443	2022-06-05	Single Cell Mining Claim	1200	400	0
200699	2022-06-05	Single Cell Mining Claim	1200	400	0
200767	2022-06-05	Single Cell Mining Claim	1200	400	0
200768	2022-06-05	Single Cell Mining Claim	1200	400	0
220312	2022-06-05	Single Cell Mining Claim	1200	400	0
227604	2022-06-05	Single Cell Mining Claim	1200	400	0
227666	2022-06-05	Single Cell Mining Claim	1200	400	0
266826	2022-06-05	Single Cell Mining Claim	1200	400	0
267397	2022-06-05	Single Cell Mining Claim	1200	400	0
274760	2022-06-05	Single Cell Mining Claim	1200	400	0
274829	2022-06-05	Single Cell Mining Claim	1200	400	0
274830	2022-06-05	Single Cell Mining Claim	1200	400	0
310724	2022-06-05	Single Cell Mining Claim	1200	400	0
323518	2022-06-05	Single Cell Mining Claim	1200	400	0
102981	2022-08-11	Single Cell Mining Claim	1200	400	0
132809	2022-08-11	Single Cell Mining Claim	600	200	0
148755	2022-08-11	Single Cell Mining Claim	1200	400	0
170958	2022-08-11	Single Cell Mining Claim	600	200	0
290941	2022-08-11	Single Cell Mining Claim	600	200	0
613115	2022-09-23	Single Cell Mining Claim	0	400	0
613116	2022-09-23	Single Cell Mining Claim	0	400	0
613117	2022-09-23	Single Cell Mining Claim	0	400	0
613118	2022-09-23	Single Cell Mining Claim	0	400	0
613119	2022-09-23	Single Cell Mining Claim	0	400	0
613120	2022-09-23	Single Cell Mining Claim	0	400	0
613121	2022-09-23	Single Cell Mining Claim	0	400	0
613122	2022-09-23	Single Cell Mining Claim	0	400	0
613123	2022-09-23	Single Cell Mining Claim	0	400	0
613124	2022-09-23	Single Cell Mining Claim	0	400	0
613125	2022-09-23	Single Cell Mining Claim	0	400	0
613126	2022-09-23	Single Cell Mining Claim	0	400	0
613127	2022-09-23	Single Cell Mining Claim	0	400	0
613128	2022-09-23	Single Cell Mining Claim	0	400	0
613129	2022-09-23	Single Cell Mining Claim	0	400	0
613130	2022-09-23	Single Cell Mining Claim	0	400	0
613131	2022-09-23	Single Cell Mining Claim	0	400	0
613132	2022-09-23	Single Cell Mining Claim	0	400	0
613133	2022-09-23	Single Cell Mining Claim	0	400	0
613134	2022-09-23	Single Cell Mining Claim	0	400	0
613135	2022-09-23	Single Cell Mining Claim	0	400	0
613136	2022-09-23	Single Cell Mining Claim	0	400	0

1	1	1	1	1	1
613137	2022-09-23	Single Cell Mining Claim	0	400	0
613138	2022-09-23	Single Cell Mining Claim	0	400	0
106156	2022-09-24	Single Cell Mining Claim	1000	400	0
110631	2022-09-24	Single Cell Mining Claim	1000	400	0
110632	2022-09-24	Single Cell Mining Claim	1200	400	0
137408	2022-09-24	Single Cell Mining Claim	600	200	0
137409	2022-09-24	Single Cell Mining Claim	600	200	0
142479	2022-09-24	Single Cell Mining Claim	600	200	0
170463	2022-09-24	Single Cell Mining Claim	600	200	0
181596	2022-09-24	Single Cell Mining Claim	100	400	0
181597	2022-09-24	Single Cell Mining Claim	1200	400	0
189036	2022-09-24	Single Cell Mining Claim	600	200	0
189942	2022-09-24	Single Cell Mining Claim	1200	400	0
208564	2022-09-24	Single Cell Mining Claim	600	200	0
234006	2022-09-24	Single Cell Mining Claim	600	200	0
237704	2022-09-24	Single Cell Mining Claim	100	400	0
267835	2022-09-24	Single Cell Mining Claim	600	200	0
343757	2022-09-24	Single Cell Mining Claim	1200	400	0
613181	2022-09-25	Single Cell Mining Claim	0	400	0
613182	2022-09-25	Single Cell Mining Claim	0	400	0
613183	2022-09-25	Single Cell Mining Claim	0	400	0
613184	2022-09-25	Single Cell Mining Claim	0	400	0
613185	2022-09-25	Single Cell Mining Claim	0	400	0
613186	2022-09-25	Single Cell Mining Claim	0	400	0
615699	2022-10-16	Single Cell Mining Claim	0	400	0
615700	2022-10-16	Single Cell Mining Claim	0	400	0
615701	2022-10-16	Single Cell Mining Claim	0	400	0
615702	2022-10-16	Single Cell Mining Claim	0	400	0
615703	2022-10-16	Single Cell Mining Claim	0	400	0
615704	2022-10-16	Single Cell Mining Claim	0	400	0
615705	2022-10-16	Single Cell Mining Claim	0	400	0
615706	2022-10-16	Single Cell Mining Claim	0	400	0
615707	2022-10-16	Single Cell Mining Claim	0	400	0
615708	2022-10-16	Single Cell Mining Claim	0	400	0
615709	2022-10-16	Single Cell Mining Claim	0	400	0
168982	2022-10-29	Single Cell Mining Claim	1200	400	0
196851	2022-10-29	Single Cell Mining Claim	600	200	0
217670	2022-10-29	Single Cell Mining Claim	1200	400	0
284953	2022-10-29	Single Cell Mining Claim	600	200	0
291771	2022-10-29	Single Cell Mining Claim	1220	400	0
343388	2022-10-29	Single Cell Mining Claim	677	200	0
125134	2022-12-01	Single Cell Mining Claim	1766	400	0
125135	2022-12-01	Single Cell Mining Claim	1766	400	0
153622	2022-12-01	Single Cell Mining Claim	883	200	0
207732	2022-12-01	Single Cell Mining Claim	1766	400	0
207733	2022-12-01	Single Cell Mining Claim	883	200	0
207734	2022-12-01	Single Cell Mining Claim	883	200	0
226406	2022-12-01	Single Cell Mining Claim	1766	400	0
273625	2022-12-01	Single Cell Mining Claim	1766	400	0
285717	2022-12-01	Single Cell Mining Claim	1766	400	0
322260	2022-12-01	Single Cell Mining Claim	883	200	0
138374	2022-12-07	Single Cell Mining Claim	1600	400	133910

247191	2022-12-07	Single Cell Mining Claim	800	400	0
184329	2022-12-09	Single Cell Mining Claim	1766	400	0
192316	2022-12-09	Single Cell Mining Claim	883	200	0
248846	2022-12-09	Single Cell Mining Claim	1600	400	0
277146	2022-12-09	Single Cell Mining Claim	1766	400	0
287943	2022-12-09	Single Cell Mining Claim	800	200	0
287944	2022-12-09	Single Cell Mining Claim	1600	400	0
308694	2022-12-09	Single Cell Mining Claim	1600	400	0
308695	2022-12-09	Single Cell Mining Claim	1600	400	0
336310	2022-12-09	Single Cell Mining Claim	1600	400	0
336311	2022-12-09	Single Cell Mining Claim	1600	400	0
109054	2023-02-04	Single Cell Mining Claim	883	200	0
109679	2023-02-04	Single Cell Mining Claim	1766	400	0
146953	2023-02-04	Single Cell Mining Claim	1766	400	0
195063	2023-02-04	Single Cell Mining Claim	1766	400	0
203221	2023-02-04	Single Cell Mining Claim	1766	400	0
230114	2023-02-04	Single Cell Mining Claim	1766	400	0
241642	2023-02-04	Single Cell Mining Claim	1766	400	0
243572	2023-02-04	Single Cell Mining Claim	883	200	0
243573	2023-02-04	Single Cell Mining Claim	1766	400	0
248847	2023-02-04	Single Cell Mining Claim	800	200	0
251617	2023-02-04	Single Cell Mining Claim	1766	400	0
304914	2023-02-04	Single Cell Mining Claim	883	200	0
308696	2023-02-04	Single Cell Mining Claim	1850	400	0
337135	2023-02-04	Single Cell Mining Claim	1766	400	0
109861	2023-02-13	Single Cell Mining Claim	800	400	0
275812	2023-02-13	Single Cell Mining Claim	883	400	0
345139	2023-02-13	Single Cell Mining Claim	883	200	0
117505	2023-02-20	Single Cell Mining Claim	800	200	35721
117506	2023-02-20	Single Cell Mining Claim	883	400	0
126136	2023-02-20	Single Cell Mining Claim	883	200	0
172336	2023-02-20	Single Cell Mining Claim	883	200	0
202293	2023-02-20	Single Cell Mining Claim	1766	400	0
256905	2023-02-20	Single Cell Mining Claim	1766	400	0
293488	2023-02-20	Single Cell Mining Claim	1911	400	0
293489	2023-02-20	Single Cell Mining Claim	1766	400	0
306156	2023-02-20	Single Cell Mining Claim	1766	400	0
312886	2023-02-20	Single Cell Mining Claim	1766	400	0
336684	2023-02-20	Single Cell Mining Claim	800	200	0
122064	2023-02-24	Single Cell Mining Claim	883	200	0
134079	2023-02-24	Single Cell Mining Claim	883	400	0
149530	2023-02-24	Single Cell Mining Claim	883	200	0
221758	2023-02-24	Single Cell Mining Claim	883	200	883
221759	2023-02-24	Single Cell Mining Claim	1766	400	0
233876	2023-02-24	Single Cell Mining Claim	883	400	0
241892	2023-02-24	Single Cell Mining Claim	1766	400	0
295826	2023-02-24	Single Cell Mining Claim	883	200	883
295827	2023-02-24	Single Cell Mining Claim	1766	400	0
302135	2023-02-24	Single Cell Mining Claim	883	400	0
325030	2023-02-24	Single Cell Mining Claim	1600	400	107261
325031	2023-02-24	Single Cell Mining Claim	1766	400	0
337384	2023-02-24	Single Cell Mining Claim	1766	400	0

340349	2023-02-24	Single Cell Mining Claim	1853	400	0
114899	2023-03-22	Single Cell Mining Claim	1766	400	0
126348	2023-03-22	Single Cell Mining Claim	1766	400	0
127592	2023-03-22	Single Cell Mining Claim	883	200	0
144048	2023-03-22	Single Cell Mining Claim	1766	400	0
144778	2023-03-22	Single Cell Mining Claim	883	200	0
145969	2023-03-22	Single Cell Mining Claim	1766	400	0
156152	2023-03-22	Single Cell Mining Claim	1766	400	0
156880	2023-03-22	Single Cell Mining Claim	1766	400	0
162176	2023-03-22	Single Cell Mining Claim	1766	400	0
165348	2023-03-22	Single Cell Mining Claim	1766	400	0
194109	2023-03-22	Single Cell Mining Claim	1766	400	0
222325	2023-03-22	Single Cell Mining Claim	1766	400	0
228857	2023-03-22	Single Cell Mining Claim	1766	400	0
228858	2023-03-22	Single Cell Mining Claim	1766	400	0
276061	2023-03-22	Single Cell Mining Claim	1766	400	0
288869	2023-03-22	Single Cell Mining Claim	1766	400	0
294911	2023-03-22	Single Cell Mining Claim	1766	400	0
294913	2023-03-22	Single Cell Mining Claim	1766	400	0
295628	2023-03-22	Single Cell Mining Claim	1766	400	0
308501	2023-03-22	Single Cell Mining Claim	1766	400	0
315233	2023-03-22	Single Cell Mining Claim	1766	400	0
328023	2023-03-22	Single Cell Mining Claim	1766	400	0
328024	2023-03-22	Single Cell Mining Claim	1766	400	0
328025	2023-03-22	Single Cell Mining Claim	1766	400	0
332021	2023-03-22	Single Cell Mining Claim	1766	400	0
181426	2023-04-07	Single Cell Mining Claim	1766	400	551
229726	2023-04-07	Single Cell Mining Claim	1766	400	0
304183	2023-04-07	Single Cell Mining Claim	883	200	0
304184	2023-04-07	Single Cell Mining Claim	1766	400	0
310959	2023-04-07	Single Cell Mining Claim	883	200	0
325032	2023-04-07	Single Cell Mining Claim	1766	400	0
100356	2023-04-08	Single Cell Mining Claim	883	200	0
100357	2023-04-08	Single Cell Mining Claim	1766	400	0
100358	2023-04-08	Single Cell Mining Claim	1766	400	0
109807	2023-04-08	Single Cell Mining Claim	1766	400	0
110204	2023-04-08	Single Cell Mining Claim	1766	400	0
110205	2023-04-08	Single Cell Mining Claim	1766	400	0
117003	2023-04-08	Single Cell Mining Claim	1766	400	0
117004	2023-04-08	Single Cell Mining Claim	1766	400	0
126349	2023-04-08	Single Cell Mining Claim	1766	400	0
127667	2023-04-08	Single Cell Mining Claim	883	200	0
137756	2023-04-08	Single Cell Mining Claim	1766	400	0
137757	2023-04-08	Single Cell Mining Claim	1766	400	0
138333	2023-04-08	Single Cell Mining Claim	1766	400	0
162892	2023-04-08	Single Cell Mining Claim	1766	400	0
172062	2023-04-08	Single Cell Mining Claim	1766	400	0
172063	2023-04-08	Single Cell Mining Claim	883	200	0
182950	2023-04-08	Single Cell Mining Claim	1766	400	0
183010	2023-04-08	Boundary Cell Mining Claim	883	200	0
183011	2023-04-08	Single Cell Mining Claim	1766	400	0
190392	2023-04-08	Single Cell Mining Claim	1766	400	0

190962	2023-04-08	Single Cell Mining Claim	883	400	0
203079	2023-04-08	Single Cell Mining Claim	1766	400	0
203143	2023-04-08	Single Cell Mining Claim	883	400	0
208849	2023-04-08	Single Cell Mining Claim	1766	400	0
210440	2023-04-08	Single Cell Mining Claim	1766	400	0
222324	2023-04-08	Single Cell Mining Claim	1766	400	0
222912	2023-04-08	Single Cell Mining Claim	1766	400	0
247109	2023-04-08	Single Cell Mining Claim	1766	400	0
247110	2023-04-08	Single Cell Mining Claim	1766	400	0
247151	2023-04-08	Single Cell Mining Claim	1766	400	0
258831	2023-04-08	Single Cell Mining Claim	1766	400	0
259171	2023-04-08	Single Cell Mining Claim	1766	400	0
276863	2023-04-08	Single Cell Mining Claim	1766	400	0
278909	2023-04-08	Single Cell Mining Claim	883	200	0
294241	2023-04-08	Single Cell Mining Claim	1766	400	0
296187	2023-04-08	Single Cell Mining Claim	883	200	0
296188	2023-04-08	Single Cell Mining Claim	1766	400	0
296215	2023-04-08	Single Cell Mining Claim	883	200	0
306304	2023-04-08	Single Cell Mining Claim	1766	400	0
306305	2023-04-08	Single Cell Mining Claim	1766	400	0
311999	2023-04-08	Single Cell Mining Claim	1766	400	0
313379	2023-04-08	Single Cell Mining Claim	1766	400	0
313654	2023-04-08	Boundary Cell Mining Claim	883	200	0
313655	2023-04-08	Single Cell Mining Claim	833	400	0
323560	2023-04-08	Single Cell Mining Claim	883	200	0
325799	2023-04-08	Single Cell Mining Claim	1766	400	0
345095	2023-04-08	Single Cell Mining Claim	1766	400	0
345147	2023-04-08	Single Cell Mining Claim	1766	400	0
104977	2023-06-04	Single Cell Mining Claim	1766	400	0
124713	2023-06-04	Single Cell Mining Claim	883	200	0
142239	2023-06-04	Single Cell Mining Claim	1766	400	0
295828	2023-06-04	Single Cell Mining Claim	1766	400	0
125608	2023-06-05	Single Cell Mining Claim	1600	400	0
103534	2023-07-10	Single Cell Mining Claim	1766	400	0
106144	2023-07-10	Single Cell Mining Claim	1766	400	0
118805	2023-07-10	Single Cell Mining Claim	1766	400	0
134210	2023-07-10	Single Cell Mining Claim	1766	400	462
136755	2023-07-10	Single Cell Mining Claim	1766	400	0
136756	2023-07-10	Single Cell Mining Claim	883	200	0
179423	2023-07-10	Single Cell Mining Claim	1766	400	0
183250	2023-07-10	Single Cell Mining Claim	1766	400	0
183251	2023-07-10	Single Cell Mining Claim	883	400	0
189278	2023-07-10	Single Cell Mining Claim	1766	400	0
189279	2023-07-10	Single Cell Mining Claim	1766	400	0
189280	2023-07-10	Single Cell Mining Claim	1766	400	0
215847	2023-07-10	Single Cell Mining Claim	1766	400	0
218609	2023-07-10	Single Cell Mining Claim	1766	400	0
234592	2023-07-10	Single Cell Mining Claim	1766	400	0
255439	2023-07-10	Single Cell Mining Claim	883	400	0
255943	2023-07-10	Single Cell Mining Claim	1766	400	98
284553	2023-07-10	Single Cell Mining Claim	883	400	0
293177	2023-07-10	Single Cell Mining Claim	1766	400	0

319484	2023-07-10	Single Cell Mining Claim	883	200	0
319485	2023-07-10	Single Cell Mining Claim	1766	400	231
341552	2023-07-10	Single Cell Mining Claim	883	200	0
118202	2023-08-11	Single Cell Mining Claim	1766	400	570
208075	2023-08-11	Boundary Cell Mining Claim	883	200	0
230375	2023-08-11	Single Cell Mining Claim	1766	200	0
322930	2023-06-11	Single Cell Mining Claim	1766	400	0
107472	2023-09-04	Single Cell Mining Claim	1766	400	0
10/4/3	2023-09-04	Single Cell Mining Claim	1766	400	0
124250	2023-09-04	Single Cell Mining Claim	1766	400	63595
148367	2023-09-04		1766	400	0
1/41/2	2023-09-04	Single Cell Mining Claim	883	200	0
192141	2023-09-04		1766	400	49753
200465	2023-09-04	Single Cell Mining Claim	883	200	0
221869	2023-09-04	Single Cell Mining Claim	1766	400	0
229421	2023-09-04	Single Cell Mining Claim	883	200	0
299662	2023-09-04	Single Cell Mining Claim	1766	400	0
308156	2023-09-04	Single Cell Mining Claim	1766	400	0
308697	2023-09-04	Single Cell Mining Claim	1766	400	0
335713	2023-09-04	Single Cell Mining Claim	883	200	0
336312	2023-09-04	Single Cell Mining Claim	1766	400	0
342446	2023-09-04	Single Cell Mining Claim	883	200	0
128103	2023-09-09	Single Cell Mining Claim	883	200	0
183073	2023-09-09	Single Cell Mining Claim	1766	400	0
188510	2023-09-09	Single Cell Mining Claim	883	200	0
204255	2023-09-09	Single Cell Mining Claim	883	200	0
210905	2023-09-09	Single Cell Mining Claim	883	200	0
229440	2023-09-09	Single Cell Mining Claim	1766	400	0
240816	2023-09-09	Single Cell Mining Claim	883	200	0
248303	2023-09-09	Single Cell Mining Claim	1766	400	89295
266170	2023-09-09	Single Cell Mining Claim	1766	400	0
314872	2023-09-09	Single Cell Mining Claim	883	200	0
125933	2023-09-24	Single Cell Mining Claim	883	200	0
155686	2023-09-24	Single Cell Mining Claim	883	200	0
175092	2023-09-24	Single Cell Mining Claim	1766	400	0
189941	2023-09-24	Single Cell Mining Claim	883	200	0
196475	2023-09-24	Single Cell Mining Claim	1766	400	0
239351	2023-09-24	Single Cell Mining Claim	883	200	0
241180	2023-09-24	Single Cell Mining Claim	883	200	0
253527	2023-09-24	Single Cell Mining Claim	883	200	0
263138	2023-09-24	Single Cell Mining Claim	883	200	0
285234	2023-09-24	Single Cell Mining Claim	883	200	0
285235	2023-09-24	Single Cell Mining Claim	883	400	0
288296	2023-09-24	Single Cell Mining Claim	883	200	0
293341	2023-09-24	Single Cell Mining Claim	1766	400	0
115951	2023-10-12	Single Cell Mining Claim	1766	400	0
123531	2023-10-12	Single Cell Mining Claim	1766	400	0
134276	2023-10-12	Single Cell Mining Claim	1766	400	372954
186923	2023-10-12	Single Cell Mining Claim	1766	400	0
199091	2023-10-12	Single Cell Mining Claim	1766	400	0
199092	2023-10-12	Single Cell Mining Claim	1766	400	0
210904	2023-10-12	Single Cell Mining Claim	883	200	883
245663	2023-10-12	Single Cell Mining Claim	1766	<u>200</u> <u>400</u>	0
273003	2023 10 12		1,00	-00	

265728	2023-10-12	Single Cell Mining Claim	1766	400	0
290221	2023-10-12	Single Cell Mining Claim	883	200	0
314851	2023-10-12	Single Cell Mining Claim	1766	400	0
227769	2023-10-29	Single Cell Mining Claim	883	200	0
274995	2023-10-29	Single Cell Mining Claim	1766	400	0
294385	2023-10-29	Single Cell Mining Claim	1766	400	0
305328	2023-10-29	Single Cell Mining Claim	883	200	0
128442	2024-02-24	Single Cell Mining Claim	2002	400	0
102980	2024-08-11	Single Cell Mining Claim	2166	400	0
Totals			678579	245000	877050

Figure 29.1 GOLDEN TARGET block claim cells (715).

30 APPENDIX 2 – HISTORIC WORK OAFD FILES

OAFD File ID	YEAR	Company	Work Description
42A08NW0119	1946	Golden Goose Gold Mine Co	Geological Survey / Mapping, Magnetic / Magnetometer Survey
42A08NW8897	1946	Goldbow Mining Co Ltd	Magnetic / Magnetometer Survey
42A08NW0120	1947	Cherry Lake Mines Ltd	Magnetic / Magnetometer Survey
42A02NE0148	1966	Midrim Mining Co Ltd	Electromagnetic, Magnetic / Magnetometer Survey
42A08NW0118	1966	Devil'S Elbow Mines Ltd	Electromagnetic, Magnetic / Magnetometer Survey
42A08NW0121	1966	Devil'S Elbow Mines Ltd	Diamond Drilling
42A07NE0141	1970	W Turney	Diamond Drilling
42A08NW8891	1971	B Taylor	Diamond Drilling
42A08SE1501	1972	Amax Potash Ltd	Electromagnetic, Magnetic / Magnetometer Survey
42A08SW0063	1972	Amax Potash Ltd	Diamond Drilling, Electromagnetic, Miscellaneous Compilation and Interpretation
42A07NE0145	1973	Northex Management Corp	Electromagnetic Very Low Frequency
42A08NW0117	1973	Driftex Ltd	Electromagnetic Very Low Frequency
42A02NE0146	1974	Derry Michener & Booth	Magnetic / Magnetometer Survey
42A08NW0114	1974	Driftex Ltd	Electromagnetic
42A09SW0314	1974	Duncan R Derry Ltd	Magnetic / Magnetometer Survey
42A07NE0013	1975	Asarco Expl Co Of Can Ltd	Geological Survey / Mapping
42A07NE0143	1975	Asarco Expl Co Of Can Ltd	Electromagnetic
42A08NW0110	1975	Duncan R Derry Ltd	Geological Survey / Mapping
42A08NW0111	1975	Derry Michener & Booth	Overburden Drilling
42A08NW0112	1975	Driftex Ltd	Magnetic / Magnetometer Survey
42A08NW0113	1975	Duncan R Derry Ltd	Magnetic / Magnetometer Survey
42A08NW0116	1975	Duncan R Derry Ltd	Magnetic / Magnetometer Survey
42A09SW0308	1975	Tillex Syndicate	Electromagnetic
42A09SW0310	1975	Duncan R Derry Ltd	Magnetic / Magnetometer Survey
42A10SE0137	1976	Falconbridge Nickel Mines	Electromagnetic, Magnetic / Magnetometer Survey
42A09SW0306	1977	D Rochon Et Al	Airborne Radiometric
42A07NE0011	1980	Asarco Expl Co Of Can Ltd	Overburden Drilling
42A07NE0012	1981	Asarco Expl Co Of Can Ltd	Diamond Drilling
42A07NE0137	1981	Asarco Expl Co Of Can Ltd	Overburden Drilling
42A08NW0708	1981	R Toms	Diamond Drilling
42A08NW8895	1981	N D Stevens	Other
42A07NE0008	1982	Kidd Creek Mines Ltd	Airborne Electromagnetic, Airborne Magnetometer
42A07NE0010	1982	Asarco Expl Co Of Can Ltd	Other, Overburden Drilling
42A08NW0063	1982	Asarco Expl Co Of Can Ltd	Other, Overburden Drilling
42A08NW0104	1982	Asarco Expl Co Of Can Ltd	Geological Survey / Mapping
42A08NW0106	1982	Asarco Expl Co Of Can Ltd	Electromagnetic, Magnetic / Magnetometer Survey
42A08NW8896	1982	N Stevens	Assaying and Analyses
42A10SE8887	1983 - 1984	Ontario Paper Co Ltd, Shogrin Min Inc	Electromagnetic Very Low Frequency, Geochemical, Geological Survey / Mapping, Magnetic / Magnetometer Survey, Prospecting By Licence Holder
42A07NE0007	1984	Asarco Expl Co Of Can Ltd	Overburden Drilling
42A07NF0009	1984	Asarco Expl Co Of Can Ltd	Diamond Drilling

OAFD File ID	YEAR	Company	Work Description
42407NF0134	1984	Dore Expl Inc	Electromagnetic Very Low Frequency, Geological
42/10/1120134	1904		Survey / Mapping
42A07NE0135	1984	Dore Expl Inc	Magnetic / Magnetometer Survey
42A08NW0103	1984	Asarco Expl Co Of Can Ltd	Diamond Drilling
42A07NE0005	1985	Asarco Expl Co Of Can Ltd	Other, Overburden Drilling
			Electromagnetic Very Low Frequency, Geological
42A07NE0006	1985	Asarco Expl Co Of Can Ltd	Survey / Mapping, Magnetic / Magnetometer
			Survey
42A10SE0104	1985	Kidd Creek Mines Ltd	Other, Overburden Drilling
424.000	1986 -		Electromagnetic, Electromagnetic Very Low
42A08NW0102	1987	Placer Development Ltd	Frequency, Geological Survey / Mapping, Magnetic
424071150004	1007		/ Magnetion feter Survey
42A07NE0004	1987		Magnetic / Magnetometer Survey
42A07NE0202	1987		Magnetic / Magnetometer Survey
42A07NE0207	1987		Magnetic / Magnetometer Survey
42A07NE0209	1987	Lac Minerais Ltd	Magnetic / Magnetometer Survey
42A07NE8952	1988	Placer Dome Ltd	Electromagnetic, Electromagnetic Very Low
12010550512	1099	Cross Lako Minorals Ltd	Goological Survey (Mapping
42A103E9545	1900	Acarco Expl Co Of Cap Ltd	Diamond Drilling
42A07NL0003	1989	Asarco Expred Of Call Etu	Electromagnetic Induced Polarization Magnetic /
42A09SW0300	1989	Cross Lake Minerals Ltd	Magnetometer Survey
42A07NE0001	1991	Granges Inc	Electromagnetic
42A07NE0115	1991	Granges Inc	Magnetic / Magnetometer Survey
			Bedrock Trenching, Diamond Drilling, Geological
42A07NE0117	1991	J Salo	Survey / Mapping
42A07NE0118	1991	Granges Inc	Electromagnetic
42A07NE0120	1991	Larry J Salo	Diamond Drilling
42A10SE0120	1991	Granges Inc	Magnetic / Magnetometer Survey
			Assaying and Analyses, Electromagnetic,
			Electromagnetic Very Low Frequency,
42A08NW0003	1994	Todd Beckett	Geochemical, Geological Survey / Mapping,
			Magnetic / Magnetometer Survey, Open Cutting,
			Prospecting By Licence Holder
42A08SW0003	1994	Joutel Resources Ltd	Electromagnetic, Magnetic / Magnetometer
	2001		Survey, Recutting Claim Lines Once Every 5 Years
42A07NE0002	1995	Falconbridge Ltd	Electromagnetic, Magnetic / Magnetometer
			Survey, Open Cutting
42A07NE0014	1995	Falconbridge Ltd	Geochemical
42A08NW0005	1995	Falconbridge Ltd	Electromagnetic, Open Cutting
42A07NE0015	1996	Falconbridge Ltd	Electromagnetic, Magnetic / Magnetometer
			Survey, Open Cutting
42A07NE0018	1996	Falconbridge Ltd	Assaying and Analyses, Diamond Drilling
42AU/NE0024	1996	Faiconbridge Ltd	Assaying and Analyses, Diamond Drilling
42A07NE0026	1996	Falconbridge Ltd Expl	Downnole Geophysics, Gradiometric, Induced
424000104/2004	1000	Toddy Door Valley Mires 151	ruidi 12d Liuti
42AU8INW2UU4	1000		Electromagnetic Induced Polarization, Designitivity
42A032M0110	1220	raiconbridge Ltd	LIEUTOMAGNETIC, MUTCED POIALIZATION, RESISTIVITY

OAFD File ID	YEAR	Company	Work Description
42A07NE2002	1997	2973090 Canada Inc	Electromagnetic Very Low Frequency, Induced Polarization, Magnetic / Magnetometer Survey, Open Cutting
42A08NW0026	1997	Westmin Resources Ltd	Geochemical
42A08NW2009	1998 - 1999	Pelangio-Larder Mines Ltd	Electromagnetic Very Low Frequency, Open Cutting
42A08NW2006	1998	Todd Beckett	Geochemical, Open Cutting, Prospecting By Licence Holder
42A08NW2008	1998	Bruce Todd Beckett	Geochemical, Prospecting By Licence Holder
42A08SW2001	1998	Arnold Allsopp	Electromagnetic, Magnetic / Magnetometer Survey, Open Cutting
42A08NW2010	1999	Echo Bay Mines Ltd	Magnetic / Magnetometer Survey, Open Cutting
42A08SW2014	1999	Arnold Allsopp, Lumac Exploration	Electromagnetic, Geochemical, Geological Survey / Mapping, Magnetic / Magnetometer Survey, Open Cutting, Prospecting By Licence Holder
42A08NW2012	2000	Echo Bay Mines Ltd	Induced Polarization
42A07NE2017	2001	Echo Bay Mines Ltd	Induced Polarization, Open Cutting
2000003074	2008	Kinross Gold Corp	Gravity, Linecutting, Magnetic / Magnetometer Survey
2000003249	2008	Metal Creek Resources Corp	Linecutting, Magnetic / Magnetometer Survey
2000003493	2008	Metals Creek Res.	Assaying and Analyses, Diamond Drilling
2000003673	2008	Metals Creek	Electromagnetic
2000005689	2010	Joe-Anne G Salo	Linecutting, Magnetic / Magnetometer Survey
20000007130	2010 - 2011	2128700 Ontario Inc, Nebu Resources Inc, Steve Dean Anderson	Induced Polarization
2000006410	2011	John Peter Rapski, Steven Dean Anderson	Electromagnetic Very Low Frequency, Linecutting, Magnetic / Magnetometer Survey
2000007351	2012	Kinross Gold Corporation	Recutting Claim Lines Once Every 5 Years
2000008439	2012 - 2013	Marcel Gilles St Jean, Marguerite Aldea Giguere St Jean	Linecutting, Magnetic / Magnetometer Survey
20000014819	2012 - 2014		Prospecting By Licence Holder, Rock Sampling
2000008804	2013	Marcel Gilles St Jean	Prospecting By Licence Holder
2000008251	2014	Good Mining Exploration Inc	Assaying and Analyses, Manual Labour, Prospecting By Licence Holder
20000014167	2014		Assaying and Analyses, Channel Sampling, Diamond Drilling, Electromagnetic Very Low Frequency, Overburden Stripping, Prospecting By Licence Holder
20000013860	2015		Prospecting By Licence Holder, Rock Sampling
20000013861	2015		Diamond Drilling, Geological Survey / Mapping, Prospecting By Licence Holder, Rock Sampling
20000015060	2017	Good Mining Exploration Inc	Assaying and Analyses, Diamond Drilling, Prospecting By Licence Holder

31 APPENDIX 3 - SUMMARY OF HISTORIC DRILLING

Table 31.1Summary of historic pre GMEI drilling on the Golden Target property.

MNDM_ID	HoleID	Company	Year	Az	Dip	Length_m	Ovd_m	NAD27Z17N_East	NAD27Z17N_North
202680	CS-1-94	D Crites	0	130	-50	163.41	38.72	528637.44	5367994
27647	47-1	Devil's Elbow Mines Ltd	1947	190	-45	60.98	0	537687.54	5369006.61
27648	47-2	Devil's Elbow Mines Ltd	1947	205	-45	60.98	0	537772.26	5368858.15
27649	47-3	Devil's Elbow Mines Ltd	1947	25	-35	106.71	0	537712.17	5368915.11
27650	56-1	Sylvanite Gold Mines Ltd.	1956	220	-31	85.37	0	537704.28	5368967.25
27651	56-2	Sylvanite Gold Mines Ltd.	1956	30	-35	76.22	0	537724.27	5368784.1
27652	56-3	Sylvanite Gold Mines Ltd.	1956	195	-35	53.35	0	537624.99	5369045.75
27643	66-1	Devil's Elbow Mines Ltd	1966	20	-45	150.91	3.35	537659.19	5368820.68
27644	66-2	Devil's Elbow Mines Ltd	1966	210	-45	76.22	14.94	537523.05	5369073.24
27645	66-3	Devil's Elbow Mines Ltd	1966	210	-45	76.22	9.45	537460.59	5369094.56
27646	66-4	Devil's Elbow Mines Ltd	1966	210	-60	155.18	3.05	537654.19	5368820.68
16293	2	W Turney	1970	360	-55	39.02	15.85	532559.65	5368424.03
22681	TX74-71	Amax Potash Ltd	1971	30	-45	168.6	1.83	551597.78	5354140.05
22682	TX75-71	Amax Potash Ltd	1971	10	-45	84.76	1.83	551786.19	5354296.43
22689	TX89-72	Amax Potash Ltd	1972	30	-50	96.34	8.54	551389.26	5354305.62
16243	C-1	Asarco Expl Co Ltd	1981	360	-45	32.32	30.49	536272.03	5370424.86
16244	C-1B	Asarco Expl Co Ltd	1981	360	-45	150	30.79	536272.03	5370419.86
16231	RC 84-1	Asarco Ltd	1984	335	-50	213.41	27.87	536558.16	5370521.63
16211	RG-89-1	Westmin Resources Ltd	1989	360	-50	401.12	37.19	536812.04	5370165.26
31590	BLK90-1	Queenstone Group	1990	45	-50	226.22	17.99	551509.45	5355216.08
16245	1	MNDM	1991	180	-45	31.25	4.57	528887.26	5367801.92
201939	CUR35-01	Falconbridge Ltd	1996	180	-65	351	46.4	531136.94	5370075.5
201940	CUR35-02	Falconbridge Ltd	1996	171	-60	345	30	531236.94	5370076
204214	C1-96	Larry Salo	1996	180	-45	116.43	14.93	528986.62	5368392
204213	C-96	Larry Salo	1996	180	-45	124.05	6.1	528957.18	5368508
204283	BOW31-01	Falconbridge Ltd	1996	310	-50	242	90.5	533325.18	5370861
211983	B-1-99	Starfire Minerals Inc	1999	45	-45	250	3	551597.43	5355193
211984	B-2-99	Starfire Minerals Inc	1999	45	-45	251	4.2	551508.25	5355196.5

MNDM_ID	HoleID	Company	Year	Az	Dip	Length_m	Ovd_m	NAD27Z17N_East	NAD27Z17N_North
16295	73-25-73	Derry Michener & Booth	1975	0	-90	11.59	10.06	529095.35	5369700.15
16296	73-25-74	Derry Michener & Booth	1975	0	-90	21.8	21.65	529093.32	5369396.22
16297	73-25-75	Derry Michener & Booth	1975	0	-90	29.57	28.05	529305.84	5369400.68
16298	73-25-76	Derry Michener & Booth	1975	0	-90	30.49	28.96	529540.82	5369372.09
16299	73-25-77	Derry Michener & Booth	1975	0	-90	40.85	39.33	528873.47	5369406.33
16300	73-25-78	Derry Michener & Booth	1975	0	-90	36.59	0	528650.23	5369313.8
16301	73-25-79	Derry Michener & Booth	1975	0	-90	38.72	37.2	528439.34	5369261.24
16305	73-25-83	Derry Michener & Booth	1975	0	-90	45.73	45.12	527530.04	5368967.16
16306	73-25-84	Derry Michener & Booth	1975	0	-90	51.52	50.15	527317.81	5368911.09
16236	CU-3	Asarco Expl Co of Canada Ltd	1980	0	-90	41.46	39.33	530726.96	5370305.88
16239	BW-5	Asarco Expl Co of Canada Ltd	1980	0	-90	27.44	26.52	536291.23	5370962.27
16240	BW-6	Asarco Expl Co of Canada Ltd	1980	0	-90	6.71	5.18	536212.41	5370866.42
16241	BW-7	Asarco Expl Co of Canada Ltd	1980	0	-90	41.46	39.18	536290.41	5370737.21
16242	BW-8	Asarco Expl Co of Canada Ltd	1980	0	-90	29.27	26.22	536287.17	5370565.62
22699	BW-12	Asarco Expl Co of Can Ltd	1981	0	-90	4.73	3.66	537945.18	5370444.68
22707	BW-20	Asarco Expl Co of Can Ltd	1981	0	-90	10.21	9.76	537954.62	5371089.79
16232	RC-2	Asarco Expl Co of Can Ltd	1982	0	-90	17.38	16.01	536434.93	5370381.16
16233	RC-82-01	Asarco Expl Co of Can Ltd	1982	0	-90	21.34	19.82	536410.38	5370463.19
16225	RC-9	Asarco Expl Co of Can Ltd	1984	0	-90	37.96	36.43	536807.42	5370764.33
16226	RC-10	Asarco Expl Co of Can Ltd	1984	0	-90	33.54	31.94	536794.02	5370641.33
16227	RC-11	Asarco Expl Co of Can Ltd	1984	0	-90	22.94	21.42	536812.55	5370475.53
16212	RC-15	Asarco Expl Co of Can Ltd	1985	0	-90	41.77	40.24	536607.14	5370253.69
16213	RC-16	Asarco Expl Co of Can Ltd	1985	0	-90	20.73	19.21	536616.27	5370153.67
16214	RC-17	Asarco Expl Co of Can Ltd	1985	0	-90	22.56	21.04	536745.61	5370320.17
16215	RC-18	Asarco Expl Co of Can Ltd	1985	0	-90	23.17	21.65	536745.16	5370217.24
16216	RC-19	Asarco Expl Co of Can Ltd	1985	0	-90	2.44	1.22	536741.67	5370013.43
16217	RC-19B	Asarco Expl Co of Can Ltd	1985	0	-90	6.1	4.27	536718.35	5370015.46
16218	RC-20	Asarco Expl Co of Can Ltd	1985	0	-90	15.55	14.18	536736.56	5369811.21
16219	RC-21	Asarco Expl Co of Can Ltd	1985	0	-90	26.83	25.61	536906.37	5370283.29
16220	RC-22	Asarco Expl Co of Can Ltd	1985	0	-90	28.96	27.29	536904.07	5370183.02
16221	RC-23	Asarco Expl Co of Can Ltd	1985	0	-90	22.26	20.58	537037.77	5370316.15
16222	RC-24	Asarco Expl Co of Can Ltd	1985	0	-90	18.6	17.07	537039.99	5370210.03
16223	RC-25	Asarco Expl Co of Can Ltd	1985	0	-90	34.45	32.93	537162.02	5370244.95
16224	RC-26	Asarco Expl Co of Can Ltd	1985	0	-90	29.27	27.44	537160.92	5370179.32

March 2, 2021

32304	QT85-043A	Kidd Creek Mines Ltd	1985	0	-90	5.8	5.8	532710.07	5369491.76
32305	QT85-044	Kidd Creek Mines Ltd	1985	0	-90	6.4	4.9	532501.72	5369511.49
32306	QT85-045	Kidd Creek Mines Ltd	1985	0	-90	7	5.6	532306.95	5369495.12
32307	QT85-046	Kidd Creek Mines Ltd	1985	0	-90	15.8	14.3	533105.64	5369644.37
32308	QT85-047	Kidd Creek Mines Ltd	1985	0	-90	16.8	15.1	533131.95	5369899.1
32309	QT85-048	Kidd Creek Mines Ltd	1985	0	-90	19.5	17.8	533123.74	5370069.97
32310	QT85-049	Kidd Creek Mines Ltd	1985	0	-90	13.4	12	533132.05	5370239.9
32312	QT85-051	Kidd Creek Mines Ltd	1985	0	-90	21.3	19.8	533132.08	5370873.58
32313	QT85-052	Kidd Creek Mines Ltd	1985	0	-90	7.9	6.3	533148.28	5371056.35
32329	QT85-074	Kidd Creek Mines Ltd	1985	0	-90	35.1	33.2	533318.12	5370706.17
32334	QT85-079	Kidd Creek Mines Ltd	1985	0	-90	7.3	5.6	533857.96	5370295.94
32335	QT85-080	Kidd Creek Mines Ltd	1985	0	-90	21.9	20.1	533809.1	5370066.6
32336	QT85-081	Kidd Creek Mines Ltd	1985	0	-90	8.5	6.7	533820.49	5369896.82
32337	QT85-082	Kidd Creek Mines Ltd	1985	0	-90	13.4	11.9	533669.91	5369881.84
32338	QT85-083	Kidd Creek Mines Ltd	1985	0	-90	10.7	9.4	533484.01	5369888.43
32339	QT85-084	Kidd Creek Mines Ltd	1985	0	-90	21.9	20.4	533320.41	5369905.31
32340	QT85-043B	Kidd Creek Mines Ltd	1985	0	-90	5.6	4	532707.3	5369506.12

32 APPENDIX 4 - SUMMARY OF GMEI DRILLING

Table 32.1 Summary of GMEI gold focussed drilling on the Golden Target property.

Hole_ID	NAD83Z17_East	NAD83Z17_North	Elev_masl	Azimuth	Dip	Length_m
GT2014-01	541800	5364161	324	5.1	-60	230.43
GT2014-02	540906	5364348	365	360	-60	17.37
GT2014-03	541533	5367578	303	358	-60	316.6
GT2015-04	540903	5364353	0	180	-50	128
GT2015-05	540901	5364451	0	180	-50	182
GT2015-06	540900	5364242	0	40	-50	242
GT2017-07	541514	5367612	0	360	-45	150
GT2017-08	541532	5367419	0	360	-45	177
GT2017-09	541239	5365457	0	120	-45	39
GT2017-10	541238	5365458	0	120	-65	51
GT2017-11	541243	5365467	0	120	-65	51
GT2017-12	541243	5365467	0	120	-45	27
GT2017-13	541276	5365436	0	300	-45	60
GT2017-14	538030	5368093	0	180	-45	180
GT2017-15	538018	5367705	0	180	-45	261

Hole_ID	NAD83Z17_East	NAD83Z17_North	Elev_masl	Azimuth	Dip	Length_m
CR2014-01	539612	5360476	352	247	-60	99.67
CR2014-02	539693	5360291	369	246.9	-60	99.21
CR2014-03	539700	5360298	369	74.1	-60	102.11
CR2014-04	539694	5360101	380	265.4	-60	153.01
CR2014-05	539701	5360090	360	87.2	-60	99.36
CR2014-06	539707	5359936	366	90.7	-60	112.01
CR2014-07	539667	5359938	366	262.5	-60	206.04
CR2014-08	539595	5360668	366	267	-60	104.39
CR2014-09	539678	5359938	366	94.7	-60	47.85
CR2014-10	539702	5359764	360	101.8	-60	107.59
CR2014-11	539568	5360652	360	99.3	-60	101.5
CR2014-12	539713	5359551	366	271.5	-60	196.29
CR2014-13	539718	5359559	366	91.6	-60	101.8
CR2014-14	539923	5359396	366	272.3	-60	47.49
CR2014-15	539624	5360476	366	90.6	-60	103.02
CR2014-16	539936	5359394	366	90	-60	35.36
CR2014-17	539564	5359453	360	96.7	-60	103.02
CR2014-18	539868	5360035	366	89.2	-60	103.02
CR2014-19	539555	5359450	360	327.1	-60	89.92
CR2014-20	539861	5360034	366	273.1	-60	93.91
CR2014-21	539527	5359674	366	100.6	-60	102.41
CR2014-22	539520	5359670	366	273.2	-60	30.48
CR2014-23	539927	5359766	366	88.2	-60	81.69
CR2014-24	539584	5360190	366	85.5	-60	100.28
CR2014-25	539927	5359766	366	269.3	-60	100.28
CR2015-26	539552	5359527	0	6	-62	122
CR2015-27	539543	5359591	0	12	-48	122
CR2015-28	539534	5359756	0	0	0	122
CR2015-29	539548	5359849	0	0	0	121.8
CR2015-30	539560	5359920	0	0	0	0
CR2015-31	539568	5360010	0	0	0	122
CR2015-32	539575	5360097	0	0	0	0
CR2015-33	539596	5360285	0	0	0	0
CR2015-34	539609	5360380	0	0	0	0
CR2015-35	539678	5359459	0	0	0	0
CR2015-36	539964	5359022	0	0	0	0
CR2015-37	540126	5358667	0	0	0	0
CR2015-38	539811	5358727	0	0	0	0

Table 32.2Summary of GMEI drilling on the Golden Target CanREE project (2014-15)..

33 APPENDIX 4 - AIRBORNE GEOPHYSICAL SURVEY

MPX Geophysics Limited report.

FINAL

November 2020

GOOD MINING EXPLORATION INC.

41-B Mintens Lane, Port Severn, Ontario, LOK 1SO, Canada.

Fixed-Wings borne Magnetic and VLF Geophysical Survey

Matheson Block

Prepared by:

QUESTOR SURVEYS LTD

925 – 223 AIRPORT ROAD Peterborough, Ontario K9J 0E7 CANADA

In Partnership with MPX Geophysics Ltd

ble of Contents	Error! Bookmark not defined
t of Figures	i
t of Tables	i
Geophysical Survey	
3.1 Operations Base	,
3.1 Operations Dase	,
3.1. Navigation	
2.2 Field Processing & Quelity Cor	
3.2 Freid Processing & Quality Cor 3.2 Droject Status Depart	
2.4 Airporeft	
2.5 Survey Equipment	
3.5 Survey Equipment	
3.5.1 Survey System Overview	
3.5.2 Airborne Magnetometer	
3.5.5 Radar Altimeter	
3.5.4 Barometric Altimeter	
3.5.5 GPS Navigation System	
3.5.6 Base Station Magnetometer	
3.5./ PC-based Data Acquisition	System
3.5.8 Very Low Frequency (VLF)	System
3.5.9 Spares	I.
4.1 Magnetometer Checks	
4.1.1 Manoeuvre noise (Figure of	Merit)
4.1.2 LAG test (parallax)	
4.1.3 Altimeter test – Radar/Baro	netric/DGPS
4.2 VLF Checks	
4.2.1 VLF System Coupling	
4.2.2 Schedules of the Transmitte	r Stations
5.1 In-Field Processing and Deliver	ables
5.1.1 Flight Path Compilation	
5.1.2 Base Station Magnetic Data	
5.2 Airborne Magnetic Data	
5.2.1 Corrections	
5.2.2 Gridding	
5.2.3 Filter Derivatives	
5.3 Airborne VLF data	
5.3.1 Polarity Compensation	
5.3.2 Correction of Time Variation	ns 2
5.3.3 Filtering	
5.3.4 Micro-leveling	
5.3.5 Conversion into percentage	values2
6.1 Digital Data	
6.1.1 Metadata Files	
6.2 Report	
6.2.1 Statement of Qualifications	

Web: www.mpxgeo.com

Appendix 1. Statement of Qualifications	. 25
Appendix 2. Digital File Metadata	. 27
Appendix 3. Project Status Report	. 30

List of Figures

Figure 1: The Cessna C206 Registration C-GWAS – fixed-wing aircraft used for the current	
survey	3
Figure 2: Survey area location map (red polygon = Matheson Block)	4
Figure 3: Location map of the survey block and flown flight path over the ASTER Elevation	
Model. Blue polygon = Matheson Block	5
Figure 4: The GEM GSM-19 base-station magnetometer.	7
Figure 5: Cessna C206 with registration C-GWAS flown during the survey	.10
Figure 6: Scintrex CS-3 Cesium Magnetometer.	.11
Figure 7: DAARC system used during the acquisition	.13
Figure 8: LAG test result.	.15
Figure 9: Results of the Radar/Barometric/DGPS altimeter test. Correlation coefficient in (A)	=
0.981634; correlation coefficient in (B) = 0.99989	.16

List of Tables

Table 1: Description of the survey area and flown distance	5
Table 2: Boundary Coordinates of the Survey Block (Datum and Projection are noted)	6
Table 3: QA/QC survey specifications.	9
Table 4: System component sampling rates	.10
Table 5: Figure of Merit (FOM) / Maneuver test.	.14
Table 6: Altimeter test measured values.	.16
Table 7: Base-station magnetic datums.	. 19
Table 8: IGRF calculation parameters.	.20
Table 9: RTP calculation parameters.	.21
Table 10: File names and descriptions for all digital data prepared.	.27
Table 11: Project Status Report.	.30

1.0 Summary

A fixed-wing borne high resolution magnetic and VLF survey was completed over one (1) block identified by the Client as "Matheson". This work was completed under contract to GOOD MINING EXPLORATION INC. ("the client").

The MPX equipment was fully installed into the Cessna C206 (Figure 1) at the MPX's Headquarters in Edenvale aerodrome, Ontario, Canada. Then, the MPX and Questor Survey crew started mobilization towards Timmins, Canada on October 30th, 2020 and arrived the same day, in order to survey the Matheson Block. Due to poor weather conditions in the following days, the first production flight was completed on November 4th, 2020 and the final survey flight over this block was completed on November 6th, 2020.

A total of 766 line-km of data were collected. The survey was flown with the best effort to sustain a nominal mean terrain clearance of 80 m along traverse and control lines separated at 75 m on E-W and N-S orientations respectively. All the details of the project areas are summarized in Table 1.

Geophysical data acquisition involved the use of precision differential GPS positioning, a high sensitivity magnetometer installed in a stinger and a VLF recording system. The Cessna C206 Registration C-GWAS was used for this survey.

This report describes the data acquisition and processing procedures, parameters, and delivery products for this survey.

Figure 1: The Cessna C206 Registration C-GWAS – fixed-wing aircraft used for the current survey.

2.0 Survey Area

A fixed-wing borne high resolution magnetic and VLF survey was completed over one (1) block identified by the Client as Matheson, as illustrated in Figure 2 and Figure 3.

Figure 2: Survey area location map (red polygon = Matheson Block).

The topography in the survey area was slightly irregular and the change in elevation was approximately from 250 m to 400 m.

During production the weather conditions were typically from mild to moderate frost (-10°C to +12°C) with light to moderate winds.

Figure 3: Location map of the survey block and flown flight path over the ASTER Elevation Model. Blue polygon = Matheson Block.

Geophysical Survey

The Project Area was flown considering the topographical and safety conditions. The details of the flown area are summarized in Table 1.

Block	Nominal Altitude	Traverse Lines		ies	Ca	ontrol Lin	Total	Area	
Name	(AGL)	Direction	Spacing	Line-km	Direction	Spacing	Line-km	line-km	(km²)
Matheson	80 m	E-W (90°)	75 m	384	N-S (0°/180°)	75 m	382	766	27.92

The survey blocks corner coordinates were requested in WGS84 UTM Zone 17N easting and northing. The survey block corner coordinates are provided below in Table 2

Μ	MATHESON BLOCK						
Cornor	WGS84 UTM Zone 17N						
Corner	Easting	Northing					
1	536300	5371000					
2	540200	5371000					
3	540200	5369200					
4	542100	5369200					
5	542100	5365100					
6	537500	5365100					
7	537500	5367500					
8	536300	5367500					

Table 2: Boundary Coordinates of the Survey Block (Datum and Projection are noted).

3.0 Survey Operations

3.1 Operations Base

The base of operations was placed in Timmins (Ontario, Canada). One magnetic base station was utilized during the project (Figure 4).

Figure 4: The GEM GSM-19 base-station magnetometer.

The station was positioned to minimize the distance to the survey block. During the entire survey, the base-station magnetometer neither registered any data out of QA/QC specifications nor displayed any malfunction.

Quality Control and preliminary data processing was undertaken by the crew in the field and at the office as the survey progressed.

3.1.1 Magnetic Base Station

For monitoring and recording diurnal variations of the Earth's magnetic field, a GEM Systems GSM-19TW Overhauser magnetometer with embedded GPS for post processing of airborne data was utilized. The magnetic sensor was set-up utilizing a staff mount at a height of 1.7 m above

ground. Every effort was made to ensure that the magnetometer sensor was placed in a location with a low magnetic gradient and sited away from electric transmission lines and moving ferrous objects, such as motor vehicles and aircraft, without compromising safety and local activity.

The base-station magnetometer was operated continuously throughout the airborne data acquisition work with a sensitivity of 0.022 nT. The ground and airborne system clocks were synchronized using UTC time. The sample rate of the base magnetometer was one time per second (1 Hz). A continuously updated profile plot of the base station values was presented on the base station screen. The magnetometer base station data were recorded in the solid-state memory of the base station and downloaded to the field laptop at the end of each day's survey operations.

3.1 Navigation

The nominal data acquisition speed of the aircraft was slower than 240 km/h (67 m/s - 130 knots). Magnetic, radar altimeter and VLF data were sampled at 20 times per second (20 Hz). The GPS position was sampled at a rate of 10 times per second (10 Hz). A position fix was recorded approximately every 6.7 m along the flight track. With a sampling rate of 0.05 s, magnetometer and radar altimeter measurements were collected approximately every 3.4 m along the survey line.

Navigation was assisted by a Novatel L1/L2 GPS system that reported GPS coordinates as WGS84 latitude and longitude and guided the pilot over a pre-programmed two-dimensional (2-D) survey grid. The x-y position of the helicopter reported by the GPS system was recorded with the terrain clearance as reported by the radar altimeter.

Vertical navigation along flight lines was established using a radar altimeter. The nominal terrain clearance during normal survey flying was 80 m. This ground clearance was the same for the aircraft, the magnetometer and VLF sensors.

3.2 Field Processing & Quality Control

The survey data were transferred to portable recording media on a flight-by-flight basis, and subsequently copied to the field data processing workstation. In-field data processing included reduction of the data to GEOSOFT *.GDB database format and inspection of the data for adherence to contract specifications listed below in Table 3. Survey lines that exhibited excessive deviation, or were considered to be of inferior quality, were re-flown. None of the flight lines required partial or complete re-flying due to equipment malfunction. Nonetheless, several lines were re-flown during the beginning of the program while the pilots got used to the survey site conditions at total expenses covered by MPX.

QA/QC SURVEY SPECIFICATIONS						
Traverse Lines Direction	E-W (90°)					
Traverse Lines Spacing	75 m					
Control Lines Direction	N-S (0°)					
Control Lines Spacing	75 m					
Flight Path Deviation (20% of SL spacing over a distance of 1 km)	Best effort to not deviate greater than 15 m over 1 km					
Flight Altitude	70-80 m AGL (best effort to not deviate more than +/- 20 m over 1 km)					
Base-station mag. diurnal	12 nT peak-to-peak over 5 min					
Figure of Merit (FOM)	Shall remain below 2.5 nT after compensations					
Survey Speed	≤ 130 knots (67 m/s)					
Magnetic noise	The 4 th difference shall not exceed +/- 0.1 nT					

Table 3: QA/QC survey specifications.

3.3 Project Status Report

MPX

The project status report provides a summary of all information relevant to the project for each day of the survey. Details include the type of activity carried out on each day (mobilization, installation, equipment troubleshooting, production, weather down-day, or pilot day off); the flight numbers; total line-km flown; total flight hours; personnel working; and any additional details for each day. The report also provides a summary of the survey block names and the line-km flown in each. The project status report is included in Appendix 3.

The installation of the geophysical and ancillary equipment was carried out by MPX personnel. The MPX operator was responsible for ensuring that the equipment functioned properly and within specifications; operating the survey equipment during data acquisition; and carrying-out preliminary quality control of the acquired data.

3.4 Aircraft

The survey was flown using a Cessna C206, with a crew of two people on board (Figure 5). The aircraft's details are specified as follows:

Aircraft Registration:	-	C-GWAS
Empty weight:	-	987 kg (2,176 lbs)
Service ceiling:	-	4,800 m / 15,700 ft
Survey duration:	-	5.5 hours (no reserves)

Figure 5: Cessna C206 with registration C-GWAS flown during the survey.

3.5 Survey Equipment

3.5.1 Survey System Overview

The system consisted of a DAARC-500 Data Acquisition System, GPS Hemisphere R330 L1/L2 navigation, Bendix King radar altimeter, Billingsley Fluxgate Magnetometer, a Scintrex CS-3 high-sensitivity Cesium magnetometer mounted into a fixed stinger, Setra 276 barometric altimeter, a Honeywell PPT set of temperature and pressure and one VLF Totem 2A system. The sampling rates for each component of the system are presented in Table 4.

SYSTEM / No. of CHANNELS	SAMPLING RATES
Total Field Magnetometer (1 channel)	20.0 / sec
Radar Altimeter (1 channel)	20.0 / sec
Billingsley Fluxgate Magnetometer (3 channels)	20.0 / sec
Barometric Altimeter (1 channel)	10.0 / sec
GPS Navigation	10.0 / sec
VLF System (4 channels)	20.0 / sec

Table 4: System component sampling rates.

3.5.2 Airborne Magnetometer

The magnetic sensor utilized for the survey was a Scintrex CS-3 high resolution cesium splitbeam total-field magnetometer, which was installed in a forward mounted stinger. The sampling rate was twenty (20) times per second with an in-flight sensitivity of 0.002 nanoTesla (nT). Aerodynamic magnetometer noise was +/- 0.01 nT. The sensitivity of the magnetometer was recorded at 0.002 nT when operated at a sampling rate of 0.05 seconds.

Figure 6: Scintrex CS-3 Cesium Magnetometer.

A Cesium vapour magnetic sensor is a miniature atomic absorption unit, producing a signal whose frequency (Larmor frequency) is proportional to the intensity of the ambient magnetic field. The unit consists of three main elements: A Cesium vapour lamp, an absorption cell, and a photosensitive diode.

These components are mounted along a common optical axis within the sensor housing. The electronic support system is mounted in the middle of the forward mounted stinger, transmitting the Larmor signal to a counter in the data acquisition system then converted the signal to magnetic field strength in nanoTeslas.

3.5.3 Radar Altimeter

A Bendix King KRA-10A altimeter recorded the ground clearance distance to an accuracy of +/-2% over a range of 0 to 2,500 ft.

3.5.4 **Barometric Altimeter**

A Setra Model 276 Pressure Transducer recorded the barometric pressure to an accuracy of about 1 ft (30 cm). The barometric altimeter was mounted on the DAARC-500 frame inside the fuselage of the helicopter.

The altimeter was interfaced to the data acquisition system with a sample rate of 0.1 seconds, and was digitally recorded.

3.5.5 GPS Navigation System

A Hemisphere R330 L1/L2 GPS navigation system input to a navigation computer and Pilot Guidance Unit (PGU) provided navigation control. The pilot guidance unit (PGU) provided steering and cross-track guidance to the pilot. The pilot was provided with GPS and altimeter data to assist in the flying of the aircraft.

Survey coordinates were set-up prior to commencement of the survey and the information was loaded into the airborne navigation system. The GPS positional data was recorded at 1 Hz intervals and used to calculate real-time differentially corrected locations.

3.5.6 Base Station Magnetometer

To monitor and record diurnal variations of the Earth's magnetic field, a GEM Systems GSM-19TW Overhauser magnetometer with onboard GPS for post processing of airborne data was

utilized. The base station magnetometer was set up at the base of operations for the respective survey area. The magnetic sensor was set-up utilizing a staff mount at a height of 1.7 m above ground. Every effort was made to ensure that the magnetometer sensor was placed in a location with a low magnetic gradient and sited away from electric transmission lines and moving ferrous objects, such as motor vehicles and aircraft, without compromising safety and local activity.

The base-station magnetometer was operated continuously throughout the airborne data acquisition work with a sensitivity of 0.022 nT. The ground and airborne system clocks were synchronized using UTC time. The sample rate of the base magnetometer was one time per second (1 Hz). A continuously updated profile plot of the base station values was presented on the base station screen. The magnetometer base station data were recorded in the solid-state memory of the base station and downloaded to the field laptop at the end of each day's survey operations.

3.5.7 PC-based Data Acquisition System

The RMS Automatic Aeromagnetic Digital Compensator (DAARC 500 - Figure 7) will be used as the magnetometer processor and real-time compensator. Magnetic compensation of the acquired "raw" magnetometer data will be collected in real-time using an RMS Instruments DAARC500 Data Acquisition and Aeromagnetic Real-Time Compensator, together with comprehensive and flexible data acquisition and recording. The RMS Instruments' DAARC500 offers the ultimate in aeromagnetic compensation. Powerful, versatile and rugged, yet compact and light, the DAARC500 is ideally suited to airborne geophysical environmental survey applications.

Aeromagnetic compensation in the DAARC500 has its roots in the AADCII, for many years the de facto standard in aeromagnetic compensation in the geophysical exploration industry throughout the world. The result of many years of R&D by RMS Instruments, and collaboration with the Flight Research Laboratory of the National Research Council of Canada, the DAARC500 continues the AADCII tradition of consistently producing outstanding data in a cost-effective manner.

The system is built on the foundation of state-of-art, very reliable hardware and firmware, and sophisticated and robust compensation algorithms that have been proven in a multitude of installations. Consistent with compensation, data acquisitions delivered with unparalleled performance, accuracy and reliability.

In simple terms, the compensation algorithm will accept the outputs of the cesium magnetometer sensor and orientation sensors and will produce outputs of compensated magnetometer data. The basic magnetometer processing software is capable of resolving down to 0.0002 nT at twenty samples per second, using proprietary digital processing techniques.

The attitude and motion of the aircraft in flight, with respect to the Earth's magnetic field vector, will be monitored/recorded by a three-component fluxgate magnetometer (Billingsley TFM 100G2 Triaxial Fluxgate Magnetometer), which is very sensitive to attitude changes. The outputs of this magnetometer, or motion or attitude sensor will be used in the mathematical computations of the compensated magnetometer data.

Questor Matheson Block, Fixed-wing borne Magnetic and VLF Survey, Ontario, Canada, 2020

Figure 7: DAARC system used during the acquisition.

3.5.8 Very Low Frequency (VLF) System

A TOTEM-2A system was installed into the aircraft for measuring the magnetic component of fields radiated from one or two VLF radio transmitters in the 15 to 25 kHz frequency range. These transmitters are located around the world for the purposes of navigation and communication with submarines. The parameters measured are the change in the total field (Hy) relative to the primary field and the vertical quadrature component (Hz QUAD). The sign of the quadrature polarity is also recorded. The system includes a sensor comprising three mutually orthogonal ferrite-cored coils and a pre-amplifier mounted on an assembly, which can be inserted inside an airfoil. It operates in a sensitivity range from 130 μ V/m to 100 mV/m at 20 kHz, and 3 dB down at 14 kHz and 24 kHz.

3.5.9 **Spares**

MPX

A complement of spare parts and test equipment were maintained at the survey site. In addition, MPX maintained an equipment log noting all equipment serial numbers, date and time of equipment repair and replacement throughout the survey.

4.0 Instrument Checks and Calibrations

The following airborne magnetometer system tests and calibration checks were completed at appropriate times during the survey.

4.1 Magnetometer Checks

4.1.1 Manoeuvre noise (Figure of Merit)

As the magnetic sensor installed in the forward-mounted stinger is still within the magnetic effect of the aircraft structure, tests were conducted to determine the effects of aircraft pitch, roll and yaw. The tests were completed at high altitude over a low magnetic gradient area by carrying out $\pm 5^{\circ}$ pitches, $\pm 10^{\circ}$ rolls, and $\pm 5^{\circ}$ yaw manoeuvres flown over periods of at least 4-5 seconds in the four cardinal directions.

A compensation Figure-of-Merit (FOM) was calculated by summing the peak-to-peak amplitudes of the twelve (12) residual magnetic signatures. The residual magnetic signatures were calculated by applying a high pass filter (with a length of 100 fiducials) to the compensated magnetic data. The amplitudes were then determined from the absolute range of the residual magnetic signature during each pitch, roll, or yaw (peak-to-peak) manoeuvre. The FOM is used as an indicator of performance and should remain below a value of 2.5 nT for a stinger configuration.

The compensation box suitable for the Cessna C206 flights with directions 090° , 180° , 270° , 360° was flown for the survey on November 4th, 2020. The FOM was determined to be 1.01 nT (Table 5).

Pre-Compensation (HP of 100 fids applied to TMI)					
Line	Direction	Pitch	Roll	Yaw	Total
L90	90	1.100	0.3900	0.5310	2.0210
L180	180	0.815	0.4230	0.4890	1.7270
L270	270	0.545	0.4160	0.3210	1.2820
L360	360	0.671	0.7540	0.4760	1.9010
	Total	3.1310	1.9830	1.8170	
	FOM =	6.9310	nT		

Table 5: Figure of Merit (FOM) / Maneuver test.

Post-Compensation (HP of 100 fids applied to TMI)					
Line	Direction	Pitch	Roll	Yaw	Total
L90	90	0.030	0.040	0.020	0.090
L180	180	0.080	0.050	0.060	0.190
L270	270	0.210	0.110	0.130	0.450
L360	360	0.120	0.070	0.090	0.280
	Total	0.112	0.270	0.174	
	FOM =	1.010	nT		

4.1.2 LAG test (parallax)

Since survey lines are often flown alternately in the opposite direction, the electronic delays during recording can result in values being shifted systematically. This test is one possible cause of the so-called "herringbone" effect sometimes seen on contour map of surveys. The test consists in checking these delays by overflying a magnetic object twice in opposite directions.

The resulting LAG value from the test was nine (9) fiducials (0.45 seconds) (Figure 8).

Figure 8: LAG test result.

4.1.3 Altimeter test – Radar/Barometric/DGPS

The altimeter calibration test was carried out by flying at the nominal heights of 250, 350, 450, 650 and 850 ft. This test is relevant because barometric equipment may change with pressure and temperature.

The results of this test are displayed as follows in Figure 9 and Table 6.

Figure 9: Results of the Radar/Barometric/DGPS altimeter test. Correlation coefficient in (A) = 0.981634; correlation coefficient in (B) = 0.99989.

Nominal Alt (ft)	Raw Baro Elev (mB)	Raw GPS Elev (m)	Raw Radar (m)	Calibrated Radar (m)	Calibrated Baro (m)
250.0	952.0	468.0	80.2	469.0	467.6
350.0	947.8	501.3	110.9	497.3	502.4
450.0	944.9	527.1	140.5	524.5	525.8
650.0	936.7	591.5	239.0	615.0	592.7
850.0	928.0	664.7	273.8	647.0	664.1
DGPS-Raw F	Radar Slope =	0.9190	DGPS-Raw	Radar Int. =	395.34
DGPS-Raw	Baro Slope =	-8.1892	DGPS-Raw	Baro Int. =	8263.69

Table 6: Altimeter test measured values.

4.2 VLF Checks

VLF checking procedures are based mainly upon transmitter functionality and operational procedures during the installation of the system into the aircraft of minor relevance for these purposes. Main factors are here described as follows.

4.2.1 VLF System Coupling

VLF system is composed of three (3) directional antennae components designated as LINE, ORTHO, and ERECT. LINE couples maximally with a field in the nominal direction of flight, ORTHO couples with a field at 90° to the direction of flight, and ERECT couples with the vertical field. The field parameters which are actually computed by the system are determined relative to the principal axis signal, which may be designated as either Line or Ortho.

On the other hand, traverse lines are disposed such as they go as perpendicular as possible to the main geological features orientation, hence the desirable field to measure by the VLF system is the one that propagates in the closest direction to the traverse lines. The transmitter stations that produce such signal are those located as perpendicular to the traverse lines orientation as possible (based on electromagnetic theory), being the signal received named as LINE data.

In addition, the radiated field may be composite of any of three waves propagating from the transmitting antenna: the surface wave, the direct wave and the sky wave. The combination of the first two waves is called "ground wave". The sky wave reaches the receiver by reflection from ionized layers above the Earth. The ground wave provides most of the signal energy received at distances 100 to 300 km, and as distances increase, effects of the sky wave component causes cyclic variations in the intensity of the composite field. The magnitude of the ground wave field component is inversely proportional to the distance.

From above mentioned considerations, transmitter stations must be selected among those that have the strength enough to reach the receiver with sufficient energy, not too far away to avoid increasing sky reflected interference signal and receive a proper ground wave energy, and considering coupling with the line direction.

The transmitters that meet such conditions are those located in northern USA, as follows:

- *NAA Cutler, Maine, USA* (44°39'N; 67°17'W), 24 kHz operating frequency, 1000 kW power, and approximately 998 km away from survey area.
- *NLM La Moure, North Dakota, USA* (46.3659°N; 98.3356°W), 25.2 kHz operating frequency, 500 kW power, and approximately 1362 km away from survey area.

The coupling of the NAA transmitter resulted in a difference angle of 31° realtive to the traverse lines orientation (E-W oriented lines), and NLM resulted in 80° difference. Therefore, NAA transmitter was selected as the LINE signal from which all the survey operations were programmed, and the NLM transmitter was chosen as the ORTHO signal. Only traverse E-W lines were used for processing and delivering final database because of the coupling.

4.2.2 Schedules of the Transmitter Stations

VLF radio transmitter stations are placed around the world, and each one of them have programmed weekly maintenance and operation schedules. NAA station is not available from 10:00 to 18:00 UTC each Monday due to maintenance and from 18:00 to 20:00 UTC because of operator training. NLM station programmed maintenance on Tuesdays, from 12:00 to 19:00 UTC.

5.0 Quality Control and Data Processing

Daily quality control check of GPS positions and archiving of the data were completed by MPX at the Toronto, Ontario office using Geosoft's Oasis Montaj software.

All data were verified upon receipt, and checked against the flight logs. The final data processing, map and report preparation was completed by MPX at the Toronto, Ontario office.

5.1 In-Field Processing and Deliverables

The following items were verified once the data arrived in the Toronto, Ontario office for final processing and grid preparation.

5.1.1 Flight Path Compilation

The flight path was derived from differentially corrected GPS positions from the airborne data. A position was calculated ten times per second (approximately every 6.7 m along the flight path). The position data were then merged into the magnetic and VLF data of the respective Geosoft GDB databases.

5.1.2 Base Station Magnetic Data

The base station magnetometer data was edited, plotted and merged into the database on a daily basis. The following constraints were used during the quality control procedure:

- Removal of spikes in the data set resulting from cultural activities not associated with the survey (e.g. a truck driving by the base station);
- Diurnal Total Magnetic Intensity linear gradient could not exceed 12 nT in a straight-line chord over 5 minutes.
- Calculation of the 4th difference noise of the signal to identify potential erroneous data

5.2 Airborne Magnetic Data

Field processed magnetic data were made available on a daily basis and at the completion of the survey prior to demobilization of the survey aircraft and crew. A description of all processing methods applied to the magnetic data is included below.

5.2.1 Corrections

The processing of the data involved editing raw magnetic data to remove any noise spikes, maneuvers compensation using the fluxgate magnetometer records, correcting for diurnal variations by using the digitally collected ground base station magnetic values, compensating the LAG effect, and network adjustment using the traverse-line and control-line information to level the survey data set. The corrected data set was used to generate the initial Total Magnetic Intensity (TMI) grid upon which all further processing and analysis has been made.

The diurnal correction was applied using the averaged magnitude datum of the block as follows (Table 7):

Table 7: Base-station magnetic datums.

Block	Base-mag Datum
Matheson	55,614.75 nT

5.2.1.1 Micro-levelling

After applying the above corrections to the magnetic profile data, residual line-direction-related noise was removed through application of microlevelling. The microlevelling technique consists of applying directional and high pass filters to produce a grid containing noise only in the line direction. In order to differentiate between noise and signal, the grid is extracted to the profile database, and an amplitude limit and a filter length are determined such that the final error channel reflects only noise present in the grid without removing or changing the geologic signal. This error channel is then subtracted from the initial data channel in order to obtain the final microlevelled channel. The microlevelled channel is then gridded using a minimum curvature algorithm. The resulting grid is therefore free of line direction noise.

5.2.2 Gridding

The corrected magnetic line data was interpolated between survey lines using a random point minimum curvature gridding algorithm to yield x-y grid values for a standard grid cell size of 1/5th of the traverse line separation (cell size = 15 m).

5.2.3 Filter Derivatives

The Total Magnetic Intensity (TMI) data were subjected to:

- Subtraction of the International Geomagnetic Reference Field (TMI-IGRF)
- Reduction to the magnetic pole (RTP)
- Calculation of the First Vertical Derivative (1VD)

Colour grids were produced for all the above listed magnetic products. The mentioned spatial filtering techniques were completed using the Oasis Montaj MAGMAP and IGRF modules for filtering in the 2D FFT domain.

5.2.3.1 IGRF Removal

The International Geomagnetic Reference Field (IGRF) is a long-wavelength regional magnetic field calculated from permanent magnetic observatory data collected worldwide. The IGRF is updated and determined by an international committee of geophysicists every five (5) years. Secular variations in the Earth's magnetic field are incorporated into the determination of the IGRF. The IGRF values were calculated from the new-released model of the year 2020 and using the parameters described in Table 8.

Dloak	IGRF Information			
DIUCK	Date	Inclination	Declination	IGRF (mean)
Matheson	2020/11/05	72.97°	-10.85°	55,537 nT

Table 8: IGRF calculation parameters.

Through the removal of the IGRF from the observed Total Magnetic Intensity (TMI), the resulting residual magnetic intensity allows for more valid modelling of individual near-surface anomalies. Additionally, the data can be more easily incorporated into databases of magnetic data acquired in the past or surveyed in the future.

5.2.3.2 Calculation of the First Vertical Derivative (1VD)

To "sharpen" magnetic anomalies and to provide a better spatial location of source axes and boundaries, a first vertical derivative map was computed from the TMI. Vertical derivatives compute the rate of change of the TMI as it drops off when measured vertically over the same point (upward continuation). Potential field data obeys Laplace's equation, which allows for the computation to take advantage of this symmetry and solve the vertical or "z" component of the field.

5.2.3.3 Calculation of the Horizontal Derivative (HRD)

Calculated from horizontal X and Y directional derivatives enhances the magnetic gradients on the horizontal plain of observation.

5.2.3.4 Reduction-to-the-Magnetic-Pole (RTP)

To compensate for the shift of the true anomaly position over the causative source, due to the magnetic inclination and declination, the magnetic data was recomputed so that magnetic anomalies will appear as they would if located at the north magnetic pole. The result of this operation is that in theory, the magnetic anomaly is located directly over top of the causative source. The computation is referred to as "reduction-to-the-pole" (RTP). The reduction-to-the-pole is computed using a FFT (Fast Fourier Transform) operator.

The RTP not only shifts the anomalies to their correct position with respect to the causative magnetic bodies, but assists in the direct correlation and comparison of magnetic anomalies, trends, structural axis, and discontinuities with mapped geologic surface expression.

The RTP was computed using the following parameters for the survey areas (Table 9):

Table 9: RTP calculation parameters.

Dlook	RTP / RTE Parameters		
BIOCK	Inclination	Declination	
Matheson	72.97°	-10.85°	

5.3 Airborne VLF data

5.3.1 Polarity Compensation

The polarity sign of the quadrature data is stored by the system, indicating the in- and out-ofphase vertical component relative to the magnetic field. Therefore, in order to match the anomalies and compensate this difference, such signs have to be changed according to the heading on which each line was flown. For this project, all line data recorded facing westwards were sign inverted multiplying data by -1, and line data recorded facing eastwards were not changed. Nevertheless, this convention can be easily changed by multiplying the entire final quadrature channel data by -1, if the ultimate user/interpreter requires and/or wants the anomalies displayed as the other option.

5.3.2 Correction of Time Variations

As survey area is far away from transmitter station, reflected sky waves interfere in the total field records in cyclic variations. Thus, shift compensations are required for leveling data recorded during different flights and times during the day, and among days. When single flights are long enough to record these cycles, and as they increase while distance to transmitter increases, sometimes shift compensations were required on data acquired during a same flight. This is made comparing some anomaly magnitudes between contiguous fights and averaging the difference between both by a constant value. It aims to make the anomalies continuous in order to represent readable geological features.

5.3.3 Filtering

In order to reduce the effect of topography and any smooth shift remaining at regional scale, a residual 2^{nd} order polynomial filter was applied on total field data (grids and maps noted as "after 2^{nd} order polynomic removal).

5.3.4 Micro-leveling

As the information from tie lines is not usable in VLF data for leveling purposes (because of the rotation of the antennae), any residual level difference has to be solved by applying a combination of Butterworth and Directional Cosine filters for extracting de-corrugation noise from data. Then this noise was evaluated and removed from data. Process step applied to both total field and quadrature.

5.3.5 Conversion into percentage values

Output data unit is Volt, relative to the 100% primary field magnitude from the calibration of the system during ground tests, and measured during survey as zero (by offsetting this magnitude down to zero, the system is able to record anomalies of >100% primary field magnitude). The

ceiling of the system's sensitivity for this survey is 10 V; it represents the 100% magnitude of change that the system may record. Therefore, multiplying both total field and quadrature by 10, data were converted into percentage.

6.0 Deliverable Products

The survey data are presented as Geosoft digital databases (*.GDB). Gridded data are delivered as Geosoft grids (*.GRD). Map files are portraited as JPEG and packed Geosoft Map formats.

Two (2) databases were delivered for the survey block containing geo-referenced magnetic data and VLF data (for VLF data, E-W lines only).

In addition, the maps were prepared at a scale of 1:20,000.

The following maps were produced in JPEG and Geosoft Packed formats:

Magnetic Maps (colour image at 300 dpi):

- Flown flight path
- Total magnetic intensity (TMI)
- Total magnetic intensity after IGRF removal Residual Magnetic Intensity (TMI-IGRF)
- Reduced to magnetic pole (RTP)
- Calculated first vertical derivative of the RTP (1VD)
- Calculated total horizontal derivative (HRD)

VLF Maps (colour image at 300 dpi):

- IN-LINE Total Field (Hy) from NAA transmitter
- IN-LINE Quadrature (Hz QUAD) from NAA transmitter
- IN-LINE Total Field after 2nd order polynomic removal, from NAA transmitter
- ORTHO Total Field (Hy) from NLM transmitter
- ORTHO Quadrature (Hz QUAD) from NLM transmitter
- ORTHO Total Field after 2nd order polynomic removal, from NLM transmitter

All map products were projected on WGS84, UTM Zone 17N, with Latitude/Longitude edge ticks. All maps and grids include in their names the line orientation used for their calculation (either traverse E-W lines or control N-S lines).

6.1 Digital Data

The edited field and processed digital data were delivered to the Client.

The grids were prepared in WGS84, UTM Zone 17N datum and projection method. Geosoft grids were interpolated at a cell size of 1/5 of the line spacing.

6.1.1 Metadata Files

Text files with information about the digital data provided for survey blocks (metadata) are made available for the survey. All files and/or database channels are described in the metadata file.

See Appendix 2 for the contents of the metadata file.

6.2 Report

This report provides information about the acquisition, processing and presentation of the survey data.

6.2.1 Statement of Qualifications

The collection of data and preparation of map and report products for this project were completed by the following staff of MPX: Daniel McKinnon, Tonia Bojkova, Marco Nieto, Fabian Linares and Jesus Piña. A summary of their qualifications appears in Appendix 1.

Respectfully submitted,

Questor Surveys Inc. MPX Geophysics Ltd.

Appendices

Appendix 1. Statement of Qualifications	. 25
Appendix 2. Digital File Metadata	. 27
Appendix 3. Project Status Report	. 30

/

Appendix 1. Statement of Qualifications

Daniel J. McKinnon, President and Field Operator

Daniel started his career in the base metal mines of New Brunswick (Canada). He has worked extensively in North and South America, Asia and Europe.

He has been associated with MPX since 2006 and, through a hands-on approach to operations, has developed a comprehensive understanding of the business, with key elements of his personality, namely attention to detail, safety and teamwork, becoming indelibly imprinted on the corporate ethos of the organization. He sets high standards in all aspects of MPX' operations, from detailed safety procedures to the quality of the equipment used.

Aided by his handpicked team of professionals, coupled with astute leadership and personal commitment, he has been privileged to see the company expand, succeed and prosper.

Under his steadfast direction, MPX has been propelled to higher levels of service based on the fundamental strategies of Industry-leading safety practices, value to the customer, commitment to socialization programs in the countries which our projects are conducted and the prioritization of the involvement/interaction with the local communities

Tonia Bojkova, M. Sc., Senior Geophysicist

Tonia received her first Master of Science degree in Engineering Geophysics at the University of Mining and Geology in Sofia, Bulgaria, where her thesis research was focused on the integration and interpretation of high resolution magnetic and radiometric data collected over southeastern Bulgaria. The best method to determine regional magnetic models without the influence of local anomalies was investigated during her second Master of Science degree obtained in Applied Mathematics at the Technical University in Sofia, Bulgaria. Tonia entered the industry in 1980 as a geophysicist for the Bulgarian government, collecting, processing, and analyzing airborne radiometric and magnetic data while also performing gamma-ray monitoring of Bulgaria after the Chernobyl NPP fallout.

Tonia has 35 years of continuous experience in the geophysical survey industry with extensive experience processing and interpreting airborne magnetic, radiometric, and electromagnetic (EM) data.

Tonia has been an integral component of the MPX team since its incorporation in 2006.

Marco Nieto, M. Sc., Senior Geophysicist, PGeo.

Marco obtained his Geologist degree at Universidad Nacional de Colombia and studied a Master in Science in Geophysics at the University of Western Ontario in London, Ontario. His 15 years of experience in Geophysical and Geological Exploration are focused on metal ore deposit exploration. He has used potential methods for Mining, Oil and underground water exploration in different countries of the Americas.

Besides, Marco is a Practicing Member of the Association of Professional Geoscientists of Ontario and a fellowship of the Society of Economic Geologists. He also has a Master in Business Administration at the University International of La Rioja (Spain). Marco has supported the MPX team since 2014.

Fabian Linares, B.Sc., Senior Geophysicist

Fabian is a Geophysical Engineer who graduated at the Central University of Venezuela in 2013, and he is a current candidate for M.Sc. in Geology. He has more than seven years of experience in both Oil & Gas and mineral exploration. He has worked in 3D3C seismic, electrical sounding, and ground/airborne potential-method surveys and interpretations (magnetic, gravity, radiometric, EM and VLF data), also including satellite-combined gravity and magnetic models. During the last four years, Fabian has served as Geophysicist at MPX Geophysics in survey operations as field QA/QC and processing and interpretation projects worldwide.

Appendix 2. Digital File Metadata

Table 10: File names and descriptions for all digital data prepared.

Matheson Survey Area - Fixed-wings borne magnetic and VLF survey, Canada

* All grids file extension is ".grd" (Geosoft Grid format)."

Grids:

WGS84 Datum, UTM Zone 17N Projection

P20058_TMI_IGRF_EW.grd	Leveled TMI - IGRF removed – nT (TMI-IGRF)
P20058_TMI_IGRF_NS.grd	
P20058_TMI_EW.grd	Leveled Total Magnetic Intensity – nT (TMI)
P20058_TMI_NS.grd	
P20058_1VDrtp_EW.grd	Calculated 1st vertical derivative of RTP – nT/m
P20058_1VDrtp_NS.grd	(1VDrtp)
P20058_HRD_EW.grd	Calculated Horizontal Derivative – nT/m (HDR)
P20058_HRD_NS.grd	
P20058_RTP_EW.grd	TMI Reduced to the magnetic pole $- nT (RTP)$
P20058_RTP_NS.grd	
P20058_TOT_LINE.grd	IN-LINE Total Field (Hy) from NAA transmitter -
	%
P20058_TOT_LINE_PolyRemoved.grd	IN-LINE Total Field (Hy) after 2nd order
	polynomic removal - %
P20058_QUAD_LINE.grd	IN-LINE Quadrature (Hz-QUAD) from NAA
	transmitter - %
P20058_TOT_ORTHO.grd	ORTHO Total Field (Hy) from NLM transmitter -
	%
P20058_TOT_ORTHO_PolyRemoved.grd	ORTHO Total Field (Hy) after 2nd order
	polynomic removal - %
P20058_QUAD_ORTHO.grd	ORTHO Quadrature (Hz - QUAD) from NLM
	transmitter - %

Note: all magnetic grids/maps include in their names at the end, if those were calculated by either using the traverse E-W lines or control N-S lines. VLF data were only processed for traverse E-W lines.

Maps:

WGS84 Datum, UTM Zone 17N Projection

One JPEG map was created per above-listed grid file using the same labeling structure but ending as either ".map" or "*.jpg" instead for the Geosoft Packed and JPEG formats respectively. In addition to above-listed files, the following maps were also generated:

P20058_FlightPath.jpg

JPEG of the Flown Flight Path

Magnetic Databases: P20058_MAG.gdb

Channel Name and description:

X_WGS84_17N	Easting – WGS84 UTM17N (metres)
Y_WGS84_17N	Northing – WGS84 UTM17N (metres)
GPSlat	Latitude (Geographic WGS84) (degrees)
GPSlong	Longitude (Geographic WGS84) (degrees)
GPSalt	GPS height (meters)
FIDN	System fiducial
Fid	Fiducial
VMX	Magnetic fluxgate data in direction X
VMY	Magnetic fluxgate data in direction Y
VMZ	Magnetic fluxgate data in direction Z
CmpMag1	Compensated Raw Total Magnetic Intensity (nT)
UTCtm_sec	UTC time (start of day) (seconds)
Radar_m	Radar Altimeter (metre)
Line	Line Number
Mag_BS	Magnetic Base Station (Diurnal)
MAG_CDL	Diurnal, Lag corrected CmpMag1 (nT)
TMI	Final levelled micro-levelled Total Magnetic Intensity (nT)
IGRF	IGRF correction applied (nT)
Incl	IGRF Inclination (degrees)
Decl	IGRF Declination (degrees)
TMI_IGRF	Final levelled, IGRF corrected Total Magnetic Intensity (nT)

VLF database: P20058_VLF_EW.gdb

Channel Name and description:

X_WGS84_17N	Easting – WGS84 UTM 21N (metres)
Y_WGS84_17N	Northing – WGS84 UTM 21N (metres)
Latitude	Latitude - WGS84 (dd.mm.ss.ss)
Longitude	Longitude - WGS84 (dd.mm.ss.ss)
Date	Flight date (YYYYMMDD)
FIDN	Fiducial
UTCtm_sec	UTC time (start of day) (seconds)
GPS_time	GPS time (hh:mm:ss.ss)
Radar_m	Radar altimeter elevation from surface (meters)
Galt_m	GPS elevation (meters)
TOT_LINE_raw	Raw Line Total Field (V)
TOT_ORTHO_raw	Raw Ortho Total Field (V)
TOT_LINE_TV	Line Total Field after Time-variation correction (V)
TOT_ORTHO_TV	Ortho Total Field after Time-variation correction (V)

TOT_LINE_LEV	Leveled Line Total Field (V)
TOT_ORTHO_LEV	Leveled Ortho Total Field (V)
TOT_LINE_PERC	Final Line Total Field (%)
TOT_ORTHO_PERC	Final Ortho Total Field (%)
TOT_LINE_PolyRem	Final Line Total Field (%) after 2nd order polynomic removal
TOT_ORTHO_PolyRem	Final Ortho Total Field (%) after 2nd order polynomic removal
QUAD_LINE_raw	Raw Line Quadrature (V)
QUAD_ORTHO_raw	Raw Ortho Quadrature (V)
QUAD_LINE_SIGN	Raw Line Quadrature after Polarity compensation (V)
QUAD_QUAD_SIGN	Raw Ortho Quadrature after Polarity compensation (V)
QUAD_LINE_LEV	Leveled Line Quadrature (V)
QUAD_ORTHO_LEV	Leveled Ortho Quadrature (V)
QUAD_LINE_PERC	Final Line Quadrature (%)
QUAD_ORTHO_PERC	Final Ortho Quadrature (%)

Report: P20058_Report.pdf

/

Base Mag (s) Base GPS: GSM19

Appendix 3. Project Status Report

Table 11: Project Status Report.

	1PX							PR	OJE	CT S	TAT	US RE	REPORT
P20058		Pau	Nagerl										Page 1 of 1
FROM			aniel	McKinnon			-		0.000	1.0			Operations Base #1 :
AREA:		Mathe	son Block	Mertimon	×	DAT	TE:	N	over	nbei	r 7, 2	2020	Timmins, Ontario
Tol Flown Acc	tal Aircraf	t Kilometers Remaining	% Done	Mobilization	Total Aircraft Hou Test/Train	Survey	Total	Ln Kilor Planned	meters Co d total Ln	ontracted Kilometre	s	749 749	Activity Type Key 4 Production 1 Mobilization 5 Weather / Project Delays
748.9 7	748.9	0.1	100%	4:24	4:44	12:54	22:02	Ln-Kilor	metres pe	r Hour		58.1	2 Installation 6 Pilot day off 3 Equipment troublest 7 Standby No-Change
	_		GENER	IAL	1	KN	IS	chrody	НО	URS	_	140.5	COMMENTS
DAY		DOY	Туре	FLT#	Crew	Flown Km	Accepted Kms	Mob	Test	Survey	Total	F	REMARKS - Temp, weather, Status (See STATS Page for Wx Codes) WX
mié-14 vie-30	4-oct-20	288	1	E/SE	1,3,8,9			4:24			4:24	Contract Sign	Signed E
sáb-31	1-oct-20	290	5	SE,CAL	1,3,8,9				3:50		3:50	High Winds	ds did not allow for survey - attempts were made at the survey area ww CAL
lun-02	2-nov-20	291	5		1,3,8,9	-						Snow, Freezi	eezing Rain and Low Ceiling did not allow for survey ws eezing Rain and Low Ceiling did not allow for survey ws
mar-03 mié-04	I-nov-20	293 294	5	CAL, FL001	1,3,8,9	3.90	3.90		0:54	0:12	1:06	Weather clea	eezing Rain and Low Ceiling did not allow for survey ws cleared late afternoon. Crew got in the survey FOM and one survey line wl
jue-05 vie-06	5-nov-20 3-nov-20	295 296	4	FLT 002, 003 FLT004	1,3,8,9 1,3,8,9	482.00 263.00	482.00 263.00			6:42 6:00	6:42 6:00	Two producti Remaining L	tuction flights conducted on the survey area today wc ng Lines complete wc
sáb-07 dom-08	7-nov-20											PROJECT D	T DEMOB
lun-09	-nov-20												
	_												
	_												
	_												
	_												
	_									8			
	_												
	_												
			3					Pla	nned Km			749.0	.0
								Previ	ous Total			748.0	9
							Decision	Rema	ining Km			0.1	1
							Previ	ous Aircr	an Hours aft Hours			22:02	02
													Area # KM Name
Notes: Per	sonnel Ke rs.)	y		2		Daniel McK Tonia Bojko	innon, MP	X CEO Geophy	sicist				1 749.0 Matheson Block
				3		Marco Nieto	o, Busines	s Develo	pment Di	ector - G	eophysic	ist	
				5				- Ocopii					
				7									
				8 9		Paul Burnel Katheron E	tt - Pilot aton - Pilo	t					
				10 11									
				12 13									
				14									
				16									
				18									
				19 20									
				21									
Equ	uipment L	ist: Aircraft:			C206						Registra	tion: C-GWAS	NAS
		Aircraft Velo	city: 		70-80m						< = 130	Knots	
		Radar Altitud	le:		70-80m						Configur	ration: Stinger	nger
		wagnetomet	CI.								Samplin	y. ZUNZ	

Sampling

34 APPENDIX 5 - ASSAY CERTIFICATES

ANALYSIS RE	PORT BBM20-0	95200	То	GOOD MINING EXPLO JOEL SCODNICK 4655 LINE 10 NORTH COLDWATER LOK 1E ON CANADA	ORATION INC
Submission Number	*BBY* Golden	Target/ 12 Rock		Date Received	16-Oct-2020
Number of Samples	12			Date Analysed	22-Oct-2020 - 06-Nov-2020
				Date Completed	06-Nov-2020
				SGS Order Number	BBM20-05200
Methods Summary	L				
Number of Sample	Method Code	Description			
12	G_WGH_KG	Weight of sam	nples r	received	
12	G_PRP	Combined Sa	mple F	Preparation	
12	GE_FAI30V5	Au, Pt, Pd, FA	S, exp	oloration grade, ICP-AES	, 30g-5mL
12	GO_FAI30V10	Au, Pt, Pd, FA	S, ore	grade, ICP-AES, 30g-10	DmL

Authorised Signatory

6

John Chiang Laboratory Operations Manager

This document is issued by the Company under its General Conditions of Service accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the Client and are not intended for commercial or contractual settlement puppess.

- not analyse	ed		element not determined	T	I.S.	insufficient sample	1	L.N.R.	listed not received	
6-Nov-2020 11:24PM BBM_U0004	45285				Page	1 of 2		MI	N-M_COA_ROW-Last Mod	ified Date: 05-Nov-2019
SGS Canada Inc.	NAM Mir	nerals	s Geochemistry 3260 Production V	Nay	Burnab	y BC. V5A 4W4 CANADA t	+1 (6	604) 638 23	49 f +1 (604) 444 5486	www.sgs.com
									Member of I	ba SGS Group (SGS SA)

Submission Number Number of Samples *BBY* Golden Target/ 12 Rock 12

Element Method Lower Limit Upper Limit Unit	Wikg G_WGH_KG 0.01 kg	@Au GE_FAI30V5 1 10,000 ppb	Au GO_FAI30V10 0.01 100 ppm m / m
628160	2.61	-	0.12
628161	2.08	-	1.25
628162	1.28	-	0.04
628163	2.00	-	0.01
628164	2.20	-	0.06
628165	3.12	-	1.49
628169	1.31	110	
628170	2.64	9	-
628171	1.57	2	-
628172	2.70	<1	
628173	2.58	4	-
628174	4.28	43	-
*BIK BLANK	-	2	-
*Rep 628174	-	36	-
*Std PGMS-27	-	4600	-
*BIK BLANK	-	2	-
*BIK BLANK	-		<0.01
*Rep 628163	-	-	<0.01
*Std PGMS-27	-	-	4.78
*BIK BLANK	-	-	<0.01

ANALYSIS REPORT BBM20-05200

SGS Canada Minerals Burnaby conforms to the requirements of ISO/IEC17025 for specific tests as listed on their scope of accreditation found at https://www.scc.ca/en/search/laboratories/sgs

Tests and Elements marked with an "@" symbol in the report denote ISO/IEC17025 accreditation.

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received
6-Nov-2020 11:24PM BBM_U0004545285 Page 2 of 2 MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019
SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA t +1 (604) 638 2349 f +1 (604) 444 5486 www.sgs.com
Member of the SGS Group (SGS SA)

ANALYSIS REPORT BBM20-05355

To GOOD MINING EXPLORATION INC JOEL SCODNICK 4655 LINE 10 NORTH COLDWATER L0K 1E0 ON CANADA

Order Number	PO#		Date Received	26-Oct-2020	
Submission Number	*BBY* Golden	Target / 12 Rocks	Date Analysed	03-Nov-2020 - 12-Nov-2020	
Number of Samples	12		Date Completed	12-Nov-2020	
	7455		SGS Order Number	BBM20-05355	
Methods Summar	X				
Number of Sample	Method Code	Description			
12	G_WGH_KG	Weight of samp	les received		
12	G_PRP	Combined Sam	ple Preparation		
12	GE_FAI30V5	Au, Pt, Pd, FAS	, exploration grade, ICP-AES	3, 30g-5mL	
1	GE_DIG40Q12	4 Acid Digest (H	HCL/HCLO4/HF/HNO3) 0.2g-	12ml	
1	GE_ICP40Q12	4 Acid Digest (H	HCL/HCLO4/HF/HNO3), ICP,	0.2g-12ml	
1	GE_IMS40Q12	4 Acid Digest P	ackage (HCL/HCLO4/HF/HN	103),ICP-MS, 0.2g-12ml	

Authorised Signatory

John Chiang Laboratory Operations Manager

This document is issued by the Company under its General Conditions of Service accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

ordenders may be prosecuted to the fullest extent of the law. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) law extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement puposes.

- not analys	ed		element not deter	mined	I.S.	insufficient sample	1	L.N.R.	listed not received	
13-Nov-2020 12:14AM BBM_U0004656942					Page	1 of 5	MIN-M_COA_ROW-Last Modified			odified Date: 05-Nov-2019
SGS Canada Inc.	NAM	Vineral	s Geochemistry 3260 Pro	oduction Way	Burnaby	BC. V5A 4W4 CANADA 1	: +1 (6	638 23	49 f +1 (604) 444 5486	www.sgs.com
-									Member	of the SGS Group (SGS SA)

Order Number Submission Number Number of Samples PO# *BBY* Golden Target / 12 Rocks 12

ANALYSIS REPORT BBM20-05355

Element Method Lower Limit Upper Limit Unit	Wikg G_WGH_KG 0.01 kg	@Au GE_FAI30V5 1 10,000 ppb	@Pt GE_FAI30V5 10 10,000 ppb	@Pd GE_FAI30V5 1 10,000 ppb	@Al GE_ICP40Q12 0.01 15 %	@Ba GE_ICP40Q12 1 10,000 ppm m / m
628175	0.66	<1	<10	2	-	a n 0
628176	0.43	<1	<10	2	-	-
628177	0.55	4	<10	16	-	-
628178	0.48	<1	<10	9	-	-
628179	0.24	<1	<10	3	-	-
628180	2.15	<1	<10	4	-	-
628181	1.34	<1	<10	8	-	-
628182	1.57	8	<10	2	6.94	344
628183	1.68	8	<10	1	-	-
628184	1.05	<1	<10	<1	-	-
628185	0.46	3	<10	5	-	
628186	0.65	<1	<10	2	-	-
*Rep 628182	-	8	<10	2	-	-
*BIK BLANK		<1	<10	<1	-	 9
*Std PGMS-27	-	4340	1200	1950	-	-
*BIK BLANK	-	-	-	-	<0.01	1
*Rep 628182		-	-	1.00	6.99	311
*Std OREAS 601	-	-	-	-	6.17	1554
*Std OREAS 905	-	-	-	- 2	6.88	2686

Element Method Lower Limit Upper Limit	@Ca GE_ICP40Q12 0.01 15	@Cr GE_ICP40Q12 1 10,000	@Cu GE_ICP40Q12 0.5 10,000	@Fe GE_ICP40Q12 0.01 15	@K GE_ICP40Q12 0.01 15	@Li GE_ICP40Q12 1 10,000
Unit	%	ppm m / m	ppm m / m	%	%	ppm m / m
628182	1.55	73	69.8	8.00	1.31	22
*BIK BLANK	<0.01	<1	<0.5	<0.01	<0.01	<1
*Rep 628182	1.56	66	71.5	8.01	1.31	22
*Std OREAS 601	1.20	34	995	2.37	2.12	22
*Std OREAS 905	0.55	13	1509	3.92	2.84	21

- not analysed	1	elemer	nt not determined	1	I.S.	insufficient sample	1	L.N.R.	listed not received	
13-Nov-2020 12:14AM BBM_U0004656942					Page	2 of 5		MI	N-M_COA_ROW-Last Mod	ified Date: 05-Nov-2019
SGS Canada Inc. NA	SGS Canada Inc. NAM Minerals Geochemistry 3260 Pro				Burnab	y BC. V5A 4W4 CANADA t	+1 (6	604) 638 23	349 f +1 (604) 444 5486	www.sgs.com

Order Number Submission Number Number of Samples PO# *BBY* Golden Target / 12 Rocks 12

ANALYSIS REPORT BBM20-05355

Element Method Lower Limit Upper Limit Unit	@Mg GE_ICP40Q12 0.01 15 %	@Mn GE_ICP40Q12 2 10,000 ppm m / m	@Na GE_ICP40Q12 0.01 15 %	@Ni GE_ICP40Q12 1 10,000 ppm m / m	@P GE_ICP40Q12 0.01 15 %	@S GE_ICP40Q12 0.01 5 %
628182	2.03	784	2.50	64	0.09	4.96
*BIK BLANK	<0.01	<2	<0.01	<1	<0.01	<0.01
*Rep 628182	2.08	797	2.55	64	0.09	4.82
*Std OREAS 601	0.37	477	1.42	23	0.05	1.06
*Std OREAS 905	0.27	366	2.38	10	0.03	0.07

Element Method Lower Limit Upper Limit Unit	@Sr GE_ICP40Q12 0.5 10,000 ppm m / m	@Ti GE_ICP40Q12 0.01 15 %	@V GE_ICP40Q12 2 10,000 ppm m / m	@Zn GE_ICP40Q12 1 10,000 ppm m / m	@Zr GE_ICP40Q12 0.5 10,000 ppm m / m	@Ag GE_IMS40Q12 0.02 100 ppm m / m
628182	182	0.46	108	748	159	0.20
*BIK BLANK	<0.5	<0.01	<2	<1	<0.5	0.03
*Rep 628182	182	0.46	106	774	158	0.17
*Std OREAS 601	222	0.17	27	1364	151	49.39
*Std OREAS 905	157	0.11	12	139	231	0.44

Element Method Lower Limit Upper Limit Unit	@Mo GE_IMS40Q12 0.05 10,000 ppm m / m	@As GE_IMS40Q12 1 10,000 ppm m / m	@Be GE_IMS40Q12 0.1 2,500 ppm m / m	@Bi GE_IMS40Q12 0.04 10,000 ppm m / m	@Cd GE_IMS40Q12 0.02 10,000 ppm m / m	@Ce GE_IMS40Q12 0.05 1,000 ppm m / m
628182	1.80	14	0.8	0.20	1.55	47.04
*BIK BLANK	<0.05	2	<0.1	<0.04	<0.02	<0.05
*Rep 628182	1.79	14	0.8	0.20	1.59	45.04
*Std OREAS 601	3.65	287	2.0	18.46	7.64	63.72
*Std OREAS 905	3.14	33	2.7	5.36	0.33	96.74

- not analysed	Ĭ.	 element not determined	L	I.S.	insufficient sample	I.	L.N.R.	listed not received
13-Nov-2020 12:14AM BBM_U0004656	942			Page	3 of 5		MI	N-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA t +1 (604) 638 2349 f +1 (604) 444 5486 www.sgs.com

Order Number Submission Number Number of Samples PO# *BBY* Golden Target / 12 Rocks 12

ANALYSIS REPORT BBM20-05355

Element Method Lower Limit Upper Limit Unit	@Co GE_IMS40Q12 0.1 10,000 ppm m / m	@Cs GE_IMS40Q12 1 1,000 ppm m / m	@Ga GE_IMS40Q12 0.1 1,000 ppm m / m	@Hf GE_IMS40Q12 0.02 500 ppm m / m	@In GE_IMS40Q12 0.02 500 ppm m / m	@La GE_IMS40Q12 0.1 10,000 ppm m / m
628182	25.3	<1	18.0	3.75	0.40	19.3
*BIK BLANK	0.1	<1	<0.1	<0.02	<0.02	<0.1
*Rep 628182	25.5	<1	18.3	3.81	0.39	18.6
*Std OREAS 601	5.9	7	20.0	4.31	1.71	31.1
*Std OREAS 905	13.6	7	24.0	6.55	0.64	42.8

Element Method Lower Limit Upper Limit Unit	@Lu GE_IMS40Q12 0.01 1,000 ppm m / m	@Nb GE_IMS40Q12 0.1 1,000 ppm m / m	@Pb GE_IMS40Q12 0.5 10,000 ppm m / m	@Rb GE_IMS40Q12 0.2 10,000 ppm m / m	@Sb GE_IMS40Q12 0.05 10,000 ppm m / m	@Sc GE_IMS40Q12 0.5 10,000 ppm m / m
628182	0.36	8.0	13.8	33.0	0.16	17.5
*BIK BLANK	<0.01	<0.1	0.6	<0.2	<0.05	<0.5
*Rep 628182	0.36	8.1	13.5	33.7	0.16	17.4
*Std OREAS 601	0.09	12.1	325	102	31.51	4.7
*Std OREAS 905	0.09	16.6	28.2	141	1.89	4.4

Element Method Lower Limit Upper Limit	@Se GE_IMS40Q12 2 1,000	@Sn GE_IMS40Q12 0.3 1,000	@Ta GE_IMS40Q12 0.05 10,000	@Tb GE_IMS40Q12 0.05 10,000	@Te GE_IMS40Q12 0.05 1,000	@Th GE_IMS40Q12 0.2 10,000
Unit	ppm m / m	ppm m / m	ppm m / m	ppm m / m	ppm m / m	ppm m / m
628182	<2	5.7	0.55	0.81	0.12	2.8
*BIK BLANK	<2	<0.3	<0.05	<0.05	<0.05	<0.2
*Rep 628182	<2	5.7	0.54	0.77	0.11	2.7
*Std OREAS 601	10	4.0	0.90	0.53	15.53	11.0
*Std OREAS 905	2	3.7	1.26	0.77	0.08	13.2

- not analysed element not determined	(T	I.S.	insufficient sample	1	L.N.R.	listed not received	
13-Nov-2020 12:14AM BBM_U0004656942		Page	4 of 5		М	IN-M_COA_ROW-Last Modi	fied Date: 05-Nov-2019
SGS Canada Inc. NAM Minerals Geochemistry 3260 Production	n Way	Burnab	y BC. V5A 4W4 CANADA t	t +1 (604) 638 2	349 f +1 (604) 444 5486	www.sgs.com
-						Member of th	e SGS Group (SGS SA)

Order Number PO# Submission Number Number of Samples 12

BBY Golden Target / 12 Rocks

ANALYSIS REPORT BBM20-05355

Element	@TI	@U	@W	@Y	@Yb
Method	GE_IMS40Q12	GE_IMS40Q12	GE_IMS40Q12	GE_IMS40Q12	GE_IMS40Q12
Lower Limit	0.02	0.05	0.1	0.1	0.1
Upper Limit Unit	10,000 ppm m / m	1,000 ppm m / m			
628182	0.50	0.63	0.3	24.7	2.4
*BIK BLANK	<0.02	<0.05	<0.1	<0.1	<0.1
*Rep 628182	0.52	0.63	0.3	24.9	2.4
*Std OREAS 601	1.14	3.70	5.5	10.6	0.6
*Std OREAS 905	0.66	4.52	2.7	14.0	0.6

SGS Canada Minerals Burnaby conforms to the requirements of ISO/IEC17025 for specific tests as listed on their scope of accreditation found at https://www.scc.ca/en/search/laboratories/sgs Tests and Elements marked with an "@" symbol in the report denote ISO/IEC17025 accreditation.

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received 13-Nov-2020 12:14AM BBM_U0004656942 Page 5 of 5 MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA t +1 (604) 638 2349 f +1 (604) 444 5486 www.sgs.com

ANALYSIS REPORT BBM20-04929

To GOOD MINING EXPLORATION INC JOEL SCODNICK 4655 LINE 10 NORTH COLDWATER LOK 1E0 ON CANADA

Order Number	PO:	Correct/ O Deelve	Date Received	07-Oct-2020
Submission Number	"BBY" Golden	arget 2 Rocks	Date Analysed	07-Oct-2020 - 24-Oct-2020
Number of Samples	2		Date Completed	24-Oct-2020
			SGS Order Number	BBM20-04929
Number of Sample	Method Code	Description		
Number of Sample	Method Code	Description		
2	G_WGH_KG	Weight of sam	oles received	
2	GO_FAS50M_P	Ag, Au, Screen	Metallics (75/106/212), plus fr	action by Fire Assay, AAS/ICP/Gra
1000				

Authorised Signatory

John Chiang Laboratory Operations Manager

This document is issued by the Company under its General Conditions of Service accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

offenders may be prosecuted to the fullest extent of the law. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the Client and are not intended for commercial or contractual settlement puposes.

- not analys	ed	element not determined	I	I.S. insufficient sample	1	L.N.R.	listed not received	
24-Oct-2020 10:45PM BBM_U0004	297291		F	age 1 of 2		MI	N-M_COA_ROW-Last M	odified Date: 05-Nov-2019
SGS Canada Inc.	NAM Minera	als Geochemistry 3260 Production	Way B	rnaby BC. V5A 4W4 CANADA t	+1 (6	638 23	349 f +1 (604) 444 5486	www.sgs.com
7							Member	of the SGS Group (SGS SA)

Order Number	PO:
Submission Number	*BBY* Golden Target/ 2 Rocks
Number of Samples	2

ANALYSIS REPORT BBM20-04929

Element	Wtkg	WT_TOTAL	Scr_size	WTP_TOT	AuP	AuMet
Method	G_WGH_KG	GO_FAS50M_P	GO_FAS50M_P	GO_FAS50M_P	GO_FAS50M_P	GO_FAS50M_P
Lower Limit	0.01			0.001	0.01	0.01
Upper Limit				-		
Unit	kg	g		g	g / t	g / t
B00127502	5.43	1112.70	106	18.890	<0.01	0.14
B00127503	3.85	1106.70	106	18.760	0.43	0.44

Element	AuM	AuMAvg
Method	GO_FAS50M_M	GO_FAS50M_M
Lower Limit	0.01	0.01
Upper Limit		
Unit	g / t	g / t
B00127502	0.14	0.14
B00127503	0.45	0.44
*Rep B00127502	0.14	-
*Rep B00127503	0.43	-
*BIK BLANK	<0.01	-
*Std OREAS250	0.32	

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received
24-Oct-2020 10:45PM BBM_U0004297291 Page 2 of 2 MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019
SGS Canada Inc. NAM Minerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA **t** +1 (604) 638 2349 **f** +1 (604) 444 5486 www.sgs.com